som*_*.py 4 python tensorflow tf.keras tensorflow2.0
我对GAN 实施中.trainable的声明感到困惑。tf.keras.model
给出以下代码片段(取自此 repo):
class GAN():
def __init__(self):
...
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
validity = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
...
return Model(noise, img)
def build_discriminator(self):
...
return Model(img, validity)
def train(self, epochs, batch_size=128, sample_interval=50):
# Load the dataset
(X_train, _), (_, _) = mnist.load_data()
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Generate a batch of new images
gen_imgs = self.generator.predict(noise)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Train the generator (to have the discriminator label samples as valid)
g_loss = self.combined.train_on_batch(noise, valid)
Run Code Online (Sandbox Code Playgroud)
在模型定义期间,self.combined判别器的权重被设置为self.discriminator.trainable = False但从未重新打开。
尽管如此,在训练循环期间,判别器的权重将会改变:
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
Run Code Online (Sandbox Code Playgroud)
并将在以下期间保持不变:
# Train the generator (to have the discriminator label samples as valid)
g_loss = self.combined.train_on_batch(noise, valid)
Run Code Online (Sandbox Code Playgroud)
这是我没想到的。
当然,这是训练 GAN 的正确(迭代)方法,但我不明白为什么我们在对self.discriminator.trainable = True判别器进行一些训练之前不必通过。
如果有人对此有解释,那就太好了,我想这是理解的关键点。
当您对 github 存储库中的代码有疑问时,检查问题(开放的和已关闭的)通常是个好主意。 此问题解释了为什么该标志设置为False。它说,
由于
self.discriminator.trainable = False是在判别器编译后设置的,因此不会影响判别器的训练。然而,由于它是在编译组合模型之前设置的,因此在训练组合模型时鉴别器层将被冻结。
还讨论了冻结 keras 层。
| 归档时间: |
|
| 查看次数: |
708 次 |
| 最近记录: |