ruk*_*uka 5 python google-cloud-dataflow apache-beam
我在 Python 上使用 Apache Beam,想问一下Wait.on()
Python SDK 上的 Apache Beam Java 相当于什么?
目前我对下面的代码片段有问题
if len(output_pcoll) > 1:
merged = (tuple(output_pcoll) |
'MergePCollections1' >> beam.Flatten())
else:
merged = output_pcoll[0]
outlier_side_input = self.construct_outlier_side_input(merged)
(merged |
"RemoveOutlier" >>
beam.ParDo(utils.Remove_Outliers(),
beam.pvalue.AsDict(outlier_side_input)) |
"WriteToCSV" >>
beam.io.WriteToText('../../ML-DATA/{0}.{1}'.format(self.BUCKET,
self.OUTPUT), num_shards=1))
Run Code Online (Sandbox Code Playgroud)
看来 Apache Beam 不会等到代码self.construct_outlier_side_input
执行完成,并在下一个管道中执行“RemoveOutlier”时导致空侧输入。在Java版本中你可以使用Wait.On()
等待construct_outlier_side_input
完成执行,但是我在Python SDK中找不到等效的方法。
--编辑--我想要实现的目标几乎与此链接中的相同, https://rmannibucau.metawerx.net/post/apache-beam-initialization-destruction-task
您可以使用 Beam 的附加输出功能来执行此操作。
示例代码片段如下
results = (words | beam.ParDo(ProcessWords(), cutoff_length=2, marker='x')
.with_outputs('above_cutoff_lengths', 'marked strings',
main='below_cutoff_strings'))
below = results.below_cutoff_strings
above = results.above_cutoff_lengths
marked = results['marked strings'] # indexing works as well
Run Code Online (Sandbox Code Playgroud)
运行上面的代码片段后,您将获得多个 PCollection,例如下面、上面和标记的。然后,您可以使用侧面输入来进一步过滤或连接结果
希望有帮助。
根据评论,我想提一下 Apache Beam 具有在ValueState
和的帮助下进行状态处理的能力BagState
。如果要求是通读 PCollection,然后根据先前值是否存在做出决策,则可以通过以下方式处理此类要求BagState
:-
def process(self,
element,
timestamp=beam.DoFn.TimestampParam,
window=beam.DoFn.WindowParam,
buffer_1=beam.DoFn.StateParam(BUFFER_STATE_1),
buffer_2=beam.DoFn.StateParam(BUFFER_STATE_2),
watermark_timer=beam.DoFn.TimerParam(WATERMARK_TIMER)):
# Do you processing here
key, value = element
# Read all the data from buffer1
all_values_in_buffer_1 = [x for x in buffer_1.read()]
if StatefulDoFn._is_clear_buffer_1_required(all_values_in_buffer_1):
# clear the buffer data if required conditions are met.
buffer_1.clear()
# add the value to buffer 2
buffer_2.add(value)
if StatefulDoFn._all_condition_met():
# Clear the timer if certain condition met and you don't want to trigger
# the callback method.
watermark_timer.clear()
yield element
@on_timer(WATERMARK_TIMER)
def on_expiry_1(self,
timestamp=beam.DoFn.TimestampParam,
window=beam.DoFn.WindowParam,
key=beam.DoFn.KeyParam,
buffer_1=beam.DoFn.StateParam(BUFFER_STATE_1),
buffer_2=beam.DoFn.StateParam(BUFFER_STATE_2)):
# Window and key parameters are really useful especially for debugging issues.
yield 'expired1'
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
3867 次 |
最近记录: |