C++中的卷积实现

Mar*_*owe 1 c++ opencv filter convolution

我想自己用C++实现2D卷积函数,而不使用filter2D()。我试图迭代输入图像和内核的所有像素,然后为 dst 的每个像素分配新值。但是,我收到了这个错误。

线程 1:EXC_BAD_ACCESS(代码=1,地址=0x0)

我发现这个错误告诉我正在访问 nullptr,但我无法解决问题。这是我的 C++ 代码。

cv::Mat_<float> spatialConvolution(const cv::Mat_<float>& src, const cv::Mat_<float>& kernel)
{
//    declare variables
    Mat_<float> dst;
    Mat_<float> flipped_kernel;
    float tmp = 0.0;

//    flip kernel
    flip(kernel, flipped_kernel, -1);

//    multiply and integrate
// input rows
    for(int i=0;i<src.rows;i++){
// input columns
        for(int j=0;j<src.cols;j++){
// kernel rows
            for(int k=0;k<flipped_kernel.rows;k++){
// kernel columns
                for(int l=0;l<flipped_kernel.cols;l++){
                    tmp += src.at<float>(i,j) * flipped_kernel.at<float>(k,l);
                }
            }
            dst.at<float>(i,j) = tmp;
        }
    }
       return dst.clone();
} 
Run Code Online (Sandbox Code Playgroud)

raf*_*x07 5

为了简化起见,我们假设您有 3x3 内核

k(0,0) k(0,1) k(0,2)
k(1,0) k(1,1) k(1,2)
k(2,0) k(2,1) k(2,2)
Run Code Online (Sandbox Code Playgroud)

I要计算卷积,您需要从左到右、从上到下扫描输入图像(标记为),并为输入图像的每个像素分配一个根据以下公式计算得出的值:

newValue(y,x) = I(y-1,x-1) * k(0,0) + I(y-1,x) * k(0,1) + I(y-1,x+1) * k(0,2)
              + I(y,x-1) * k(1,0) + I(y,x) * k(1,1) + I(y,x+1) * k(1,2) + 
              + I(y+1,x-1) * k(2,0) + I(y+1,x) * k(2,1) + I(y+1,x+1) * k(2,2)


 ------------------x------------>
 |
 |
 |      [k(0,0) k(0,1) k(0,2)]
 y      [k(1,0) k(1,1) k(1,2)] 
 |      [k(2,0) k(2,1) k(2,2)]
 |
Run Code Online (Sandbox Code Playgroud)

(y,x)输入 Image ( I) 的锚点是内核的锚点,要为其分配新值,I(y,x) 您需要将每个k系数乘以相应的点I- 您的代码不会这样做。

首先,您需要创建dst尺寸与原始图像相同且像素类型相同的矩阵。然后您需要重写循环以反映上述公式:

cv::Mat_<float> spatialConvolution(const cv::Mat_<float>& src, const cv::Mat_<float>& kernel)
{
    Mat dst(src.rows,src.cols,src.type());

    Mat_<float> flipped_kernel; 
    flip(kernel, flipped_kernel, -1);

    const int dx = kernel.cols / 2;
    const int dy = kernel.rows / 2;

    for (int i = 0; i<src.rows; i++) 
    {
        for (int j = 0; j<src.cols; j++) 
        {
            float tmp = 0.0f;
            for (int k = 0; k<flipped_kernel.rows; k++) 
            {
              for (int l = 0; l<flipped_kernel.cols; l++) 
              {
                int x = j - dx + l;
                int y = i - dy + k;
                if (x >= 0 && x < src.cols && y >= 0 && y < src.rows)
                    tmp += src.at<float>(y, x) * flipped_kernel.at<float>(k, l);
              }
            }
            dst.at<float>(i, j) = saturate_cast<float>(tmp);
        }
    }
    return dst.clone();
}
Run Code Online (Sandbox Code Playgroud)