如何使用 tf.saved_model 加载模型并调用预测函数 [TENSORFLOW 2.0 API]

elh*_*dev 7 load model save predict tensorflow

我对张量流非常陌生,尤其是 2.0,因为没有足够的关于该 API 的示例,但它似乎比 1.x 方便得多到目前为止,我设法使用 tf.estimator api 训练线性模型,然后设法保存它使用 tf.estimator.exporter。

之后,我想使用 tf.saved_model api 加载这个模型,我想我成功了,但我对我的程序有一些疑问,所以这里快速浏览一下我的代码:

所以我有一个使用 tf.feature_column api 创建的功能数组,它看起来像这样:

feature_columns = 
[NumericColumn(key='geoaccuracy', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
 NumericColumn(key='longitude', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
 NumericColumn(key='latitude', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
 NumericColumn(key='bidfloor', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
 VocabularyListCategoricalColumn(key='adid', vocabulary_list=('115', '124', '139', '122', '121', '146', '113', '103', '123', '104', '147', '114', '149', '148'), dtype=tf.string, default_value=-1, num_oov_buckets=0),
 VocabularyListCategoricalColumn(key='campaignid', vocabulary_list=('36', '31', '33', '28'), dtype=tf.string, default_value=-1, num_oov_buckets=0),
 VocabularyListCategoricalColumn(key='exchangeid', vocabulary_list=('1241', '823', '1240', '1238'), dtype=tf.string, default_value=-1, num_oov_buckets=0),
...]
Run Code Online (Sandbox Code Playgroud)

之后,我以这种方式使用我的特征列数组定义一个估计器,并训练它。直到这里,没问题。

linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns)
Run Code Online (Sandbox Code Playgroud)

训练我的模型后,我想保存它,所以这里开始产生疑问,这是我的操作方式,但不确定这是正确的方法:

serving_input_parse = tf.feature_column.make_parse_example_spec(feature_columns=feature_columns)

""" view of the variable : serving_input_parse = 
 {'adid': VarLenFeature(dtype=tf.string),
 'at': VarLenFeature(dtype=tf.string),
 'basegenres': VarLenFeature(dtype=tf.string),
 'bestkw': VarLenFeature(dtype=tf.string),
 'besttopic': VarLenFeature(dtype=tf.string),
 'bidfloor': FixedLenFeature(shape=(1,), dtype=tf.float32, default_value=None),
 'browserid': VarLenFeature(dtype=tf.string),
 'browserlanguage': VarLenFeature(dtype=tf.string)
 ...} """

# exporting the model :
linear_est.export_saved_model(export_dir_base='./saved',
 serving_input_receiver_fn=tf.estimator.export.build_parsing_serving_input_receiver_fn(serving_input_receiver_fn),
 as_text=True)
Run Code Online (Sandbox Code Playgroud)

现在我尝试加载它,但我不知道如何使用加载的模型来使用 pandas 数据帧中的原始数据调用预测

loaded = tf.saved_model.load('saved/1573144361/')
Run Code Online (Sandbox Code Playgroud)

另一件事,我试图查看模型的签名,但我无法真正理解我的输入形状发生了什么

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['classification']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['inputs'] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_example_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['classes'] tensor_info:
        dtype: DT_STRING
        shape: (-1, 2)
        name: head/Tile:0
    outputs['scores'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 2)
        name: head/predictions/probabilities:0
  Method name is: tensorflow/serving/classify

signature_def['predict']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['examples'] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_example_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['all_class_ids'] tensor_info:
        dtype: DT_INT32
        shape: (-1, 2)
        name: head/predictions/Tile:0
    outputs['all_classes'] tensor_info:
        dtype: DT_STRING
        shape: (-1, 2)
        name: head/predictions/Tile_1:0
    outputs['class_ids'] tensor_info:
        dtype: DT_INT64
        shape: (-1, 1)
        name: head/predictions/ExpandDims:0
    outputs['classes'] tensor_info:
        dtype: DT_STRING
        shape: (-1, 1)
        name: head/predictions/str_classes:0
    outputs['logistic'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1)
        name: head/predictions/logistic:0
    outputs['logits'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1)
        name: linear/linear_model/linear/linear_model/linear/linear_model/weighted_sum:0
    outputs['probabilities'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 2)
        name: head/predictions/probabilities:0
  Method name is: tensorflow/serving/predict

signature_def['regression']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['inputs'] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_example_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['outputs'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1)
        name: head/predictions/logistic:0
  Method name is: tensorflow/serving/regress

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['inputs'] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_example_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['classes'] tensor_info:
        dtype: DT_STRING
        shape: (-1, 2)
        name: head/Tile:0
    outputs['scores'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 2)
        name: head/predictions/probabilities:0
  Method name is: tensorflow/serving/classify
Run Code Online (Sandbox Code Playgroud)

net*_*ink 0

看起来您使用了 saving_model_cli 命令行工具来输出最后一部分。由此,您有一个“预测”函数,它显示输入类型、列等。当我这样做时,我会看到所有输入列。在您的情况下,它仅显示一个输入,即名为示例的字符串。这看起来不正确。

这是输出的摘录$ saved_model_cli show --dir /somedir/export/exporter/123456789 --all。在输出中,点显示已删除的行,因为它们看起来相似。

signature_def['predict']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['feature_num_1'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1)
        name: Placeholder_29:0
...
...
 The given SavedModel SignatureDef contains the following output(s):
    outputs['all_class_ids'] tensor_info:
        dtype: DT_INT32
        shape: (-1, 2)
        name: dnn/head/predictions/Tile:0
    outputs['all_classes'] tensor_info:
        dtype: DT_STRING
        shape: (-1, 2)
        name: dnn/head/predictions/Tile_1:0
...
...
  Method name is: tensorflow/serving/predict
Run Code Online (Sandbox Code Playgroud)