m1n*_*keh 5 c# apache-spark azure-stream-analytics spark-avro azure-databricks
我正在使用以下代码将数据流推送到 Azure EventHub Microsoft.Hadoop.Avro.. 此代码每 5 秒运行一次,并简单地插入相同的两个 Avro 序列化项目:
var strSchema = File.ReadAllText("schema.json");
var avroSerializer = AvroSerializer.CreateGeneric(strSchema);
var rootSchema = avroSerializer.WriterSchema as RecordSchema;
var itemList = new List<AvroRecord>();
dynamic record_one = new AvroRecord(rootSchema);
record_one.FirstName = "Some";
record_one.LastName = "Guy";
itemList.Add(record_one);
dynamic record_two = new AvroRecord(rootSchema);
record_two.FirstName = "A.";
record_two.LastName = "Person";
itemList.Add(record_two);
using (var buffer = new MemoryStream())
{
using (var writer = AvroContainer.CreateGenericWriter(strSchema, buffer, Codec.Null))
{
using (var streamWriter = new SequentialWriter<object>(writer, itemList.Count))
{
foreach (var item in itemList)
{
streamWriter.Write(item);
}
}
}
eventHubClient.SendAsync(new EventData(buffer.ToArray()));
}
Run Code Online (Sandbox Code Playgroud)
这里使用的模式同样是 v. simple:
{
"type": "record",
"name": "User",
"namespace": "SerDes",
"fields": [
{
"name": "FirstName",
"type": "string"
},
{
"name": "LastName",
"type": "string"
}
]
}
Run Code Online (Sandbox Code Playgroud)
我已经验证这一切都很好,在门户上的 Azure 流分析中有一个简单的视图:
到目前为止一切顺利,但我不能在我的一生中正确地反序列化它在 Databricks 中利用from_avro()Scala 下的命令..
将(完全相同的)模式加载为字符串:
val sampleJsonSchema = dbutils.fs.head("/mnt/schemas/schema.json")
Run Code Online (Sandbox Code Playgroud)
配置事件中心
val connectionString = ConnectionStringBuilder("<CONNECTION_STRING>")
.setEventHubName("<NAME_OF_EVENT_HUB>")
.build
val eventHubsConf = EventHubsConf(connectionString).setStartingPosition(EventPosition.fromEndOfStream)
val eventhubs = spark.readStream.format("eventhubs").options(eventHubsConf.toMap).load()
Run Code Online (Sandbox Code Playgroud)
读取数据..
// this works, and i can see the serialised data
display(eventhubs.select($"body"))
// this fails, and with an exception: org.apache.spark.SparkException: Malformed records are detected in record parsing. Current parse Mode: FAILFAST. To process malformed records as null result, try setting the option 'mode' as 'PERMISSIVE'.
display(eventhubs.select(from_avro($"body", sampleJsonSchema)))
Run Code Online (Sandbox Code Playgroud)
所以基本上,这里发生了什么..我正在使用与反序列化相同的模式序列化数据,但是有些东西格式错误..这方面的文档非常稀少(在Microsoft网站上非常少)。
问题
经过额外调查(主要是在本文的帮助下),我发现我的问题是:from_avro(data: Column, jsonFormatSchema: String)需要 Spark 模式格式而不是 avro 模式格式。文档对此不是很清楚。
解决方案1
Databricks 提供了一种方便的方法from_avro(column: Column, subject: String, schemaRegistryUrl: String)),可以从 kafka 模式注册表中获取所需的 avro 模式并自动转换为正确的格式。
不幸的是,它不适用于纯 Spark,也无法在没有 kafka 模式注册表的情况下使用它。
解决方案2
使用spark提供的schema转换:
// define avro deserializer
class AvroDeserializer() extends AbstractKafkaAvroDeserializer {
override def deserialize(payload: Array[Byte]): String = {
val genericRecord = this.deserialize(payload).asInstanceOf[GenericRecord]
genericRecord.toString
}
}
// create deserializer instance
val deserializer = new AvroDeserializer()
// register deserializer
spark.udf.register("deserialize_avro", (bytes: Array[Byte]) =>
deserializer.deserialize(bytes)
)
// get avro schema from registry (but I presume that it should also work with schema read from a local file)
val registryClient = new CachedSchemaRegistryClient(kafkaSchemaRegistryUrl, 128)
val avroSchema = registryClient.getLatestSchemaMetadata(topic + "-value").getSchema
val sparkSchema = SchemaConverters.toSqlType(new Schema.Parser().parse(avroSchema))
// consume data
df.selectExpr("deserialize_avro(value) as data")
.select(from_json(col("data"), sparkSchema.dataType).as("data"))
.select("data.*")
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1288 次 |
| 最近记录: |