sal*_*izl 5 python keras tensorflow2.0
我想在tensorflow2.0的SGD优化器中降低学习率,我使用了这行代码:tf.keras.optimizers.SGD(learning_rate, decay=lr_decay, momentum=0.9)
但是我不知道我的学习率是否下降了,我怎样才能得到我当前的学习率?
print(model.optimizer._decayed_lr('float32').numpy())
Run Code Online (Sandbox Code Playgroud)
会做。计算衰减学习率作为和_decayed_lr()的函数。完整示例如下。iterationsdecay
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import SGD
import numpy as np
ipt = Input((12,))
out = Dense(12)(ipt)
model = Model(ipt, out)
model.compile(SGD(1e-4, decay=1e-2), loss='mse')
x = y = np.random.randn(32, 12) # dummy data
for iteration in range(10):
model.train_on_batch(x, y)
print("lr at iteration {}: {}".format(
iteration + 1, model.optimizer._decayed_lr('float32').numpy()))
Run Code Online (Sandbox Code Playgroud)
# OUTPUTS
lr at iteration 1: 9.900989971356466e-05
lr at iteration 2: 9.803921420825645e-05
lr at iteration 3: 9.708738070912659e-05
lr at iteration 4: 9.61538462433964e-05
lr at iteration 5: 9.523809421807528e-05
lr at iteration 6: 9.433962259208784e-05
lr at iteration 7: 9.345793660031632e-05
lr at iteration 8: 9.259258513338864e-05
lr at iteration 9: 9.174311708193272e-05
lr at iteration 10: 9.09090886125341e-05
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2353 次 |
| 最近记录: |