如何使用来自 Google AutoML Vision Classification 的 TensorFlow Frozen GraphDef (single saved_model.pb) 进行推理和迁移学习

mat*_*att 5 python tensorflow tensor transfer-learning google-cloud-automl

我使用的是从 Google AutoML Vision 导出的分类模型,因此我只有一个saved_model.pb而没有变量、检查点等。我想将此模型图加载到本地 TensorFlow 安装中,将其用于推理并继续使用更多图片进行训练。

主要问题:

  • 这个计划是否可行,即使用saved_model.pb没有变量、检查点等的单一计划并用新数据训练结果图?

  • 如果是:您如何(?,)使用编码为字符串的图像获得输入形状?

  • 理想情况下,展望未来:培训部分有什么需要考虑的重要事项吗?


关于代码的背景信息:

  • 为了读取图像,我使用与使用 Docker 容器进行推理时相同的方法,因此使用 base64 编码的图像。

  • 为了加载图表,我通过 CLI ( saved_model_cli show --dir input/model)检查了图表需要的标签集,即serve.

  • 为了让我使用输入张量的名字graph.get_operations(),这让我Placeholder:0image_bytesPlaceholder:1_0关键(任意的字符串识别图像)。两者都有维度dim -1

import tensorflow as tf
import numpy as np
import base64

path_img = "input/testimage.jpg"
path_mdl = "input/model"

# input to network expected to be base64 encoded image
with io.open(path_img, 'rb') as image_file:
    encoded_image = base64.b64encode(image_file.read()).decode('utf-8')

# reshaping to (1,) as the expecte dimension is (?,)
feed_dict_option1 = {
    "Placeholder:0": { np.array(str(encoded_image)).reshape(1,) }, 
    "Placeholder_1:0" : "image_key"
}

# reshaping to (1,1) as the expecte dimension is (?,)
feed_dict_option2 = {
    "Placeholder:0": np.array(str(encoded_image)).reshape(1,1), 
    "Placeholder_1:0" : "image_key"
}

with tf.Session(graph=tf.Graph()) as sess:
    tf.saved_model.loader.load(sess, ["serve"], path_mdl)

    graph = tf.get_default_graph()

    sess.run('scores:0',
               feed_dict=feed_dict_option1)

    sess.run('scores:0',
               feed_dict=feed_dict_option2)



Run Code Online (Sandbox Code Playgroud)

输出:

# for input reshaped to (1,)
ValueError: Cannot feed value of shape (1,) for Tensor 'Placeholder:0', which has shape '(?,)'

# for input reshaped to (1,1)
ValueError: Cannot feed value of shape (1, 1) for Tensor 'Placeholder:0', which has shape '(?,)'

Run Code Online (Sandbox Code Playgroud)

你如何获得 的输入形状(?,)

非常感谢。

sho*_*er3 4

是的!有可能,我有一个应该类似的对象检测模型,我可以在tensorflow 1.14.0中按如下方式运行它:

import cv2
cv2.imread(filepath)
flag, bts = cv.imencode('.jpg', img)
inp = [bts[:,0].tobytes()]
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                sess.graph.get_tensor_by_name('detection_scores:0'),
                sess.graph.get_tensor_by_name('detection_boxes:0'),
                sess.graph.get_tensor_by_name('detection_classes:0')],
               feed_dict={'encoded_image_string_tensor:0': inp})
Run Code Online (Sandbox Code Playgroud)

我使用 netron 来查找我的输入。

在tensorflow 2.0中更容易:

import cv2
cv2.imread(filepath)
flag, bts = cv.imencode('.jpg', img)
inp = [bts[:,0].tobytes()]
saved_model_dir = '.'
loaded = tf.saved_model.load(export_dir=saved_model_dir)
infer = loaded.signatures["serving_default"]
out = infer(key=tf.constant('something_unique'), image_bytes=tf.constant(inp))
Run Code Online (Sandbox Code Playgroud)

也不saved_model.pb是 a frozen_inference_graph.pb,请参阅:What is Difference freeze_inference_graph.pb 和 saving_model.pb?