从以底图位置为中心的 networkx 绘制图形

sol*_*sol 5 python networkx pygraphviz matplotlib-basemap

我正在寻找在地图上绘制多个子图,每个子图都以一个地理位置(或绘图的一个坐标)为中心。节点本身没有位置(或者它们都属于一个城市),但每个子图对应一个本地情况。

  • 我试图为每个子图只为一个节点分配一个位置,使用“居中”选项默认绘制其余的图
  • 我试图从/sf/answers/2071804661/ 中得到启发,在一个位置上绘制一个分层图,但没有成功

    # -*- coding: utf-8 -*-
    import networkx as nx
    import pygraphviz
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap as Basemap
    
    G1 = nx.Graph()
    G1.add_edge('a', 'b', weight=0.6)
    G1.add_edge('a', 'c', weight=0.2)
    G1.add_edge('c', 'd', weight=0.1)
    G1.add_edge('c', 'e', weight=0.7)
    G1.add_edge('c', 'f', weight=0.9)
    G1.add_edge('a', 'd', weight=0.3)
    
    G2 = nx.Graph()
    G2.add_edge('a', 'b', weight=0.9)
    G2.add_edge('a', 'f', weight=0.5)
    G2.add_edge('c', 'd', weight=0.1)
    G2.add_edge('c', 'e', weight=0.4)
    G2.add_edge('c', 'f', weight=0.2)
    G2.add_edge('a', 'd', weight=0.1)
    
    edges = G.edges()
    weights = [G[u][v]['weight'] for u,v in edges] # liste des poids des edges
    
    fig = plt.figure(figsize=(8, 8))
    m = Basemap(projection='npstere',boundinglat=48,lon_0=270,resolution='l')
    m.etopo(scale=0.5, alpha=0.5)
    mx1,my1=m(-6.266155,53.350140) #would be long, lat coordinates of city 1
    mx2,my2=m(-21.827774, 64.128288) #would be long, lat coordinates of city 2
    
    nx.draw_networkx(G1,center=(mx1,my1),pos=nx.spring_layout(G1),node_size=200,node_color='green')
    nx.draw_networkx(G2,center=(mx2,my2),pos=nx.spring_layout(G2),node_size=200,node_color='red')
    plt.title("North Polar Stereographic Projection")
    plt.show()
    
    Run Code Online (Sandbox Code Playgroud)

swa*_*hai 2

通过单独计算节点的位置,我可以很好地绘制网络。您可以再次尝试使用此代码片段来代替您的相关部分。

# (other code above this line)
#
import numpy as np
# compute the positions here
# proper scaling (500000) is applied to the original positions ..
# .. obtained from xxx_layout() to get good spreading
pos1 = nx.spring_layout(G1)
for ea in pos1.keys():
    pos1[ea] =  np.array([mx1, my1]) + pos1[ea]*500000

pos2 = nx.circular_layout(G2)
for ea in pos2.keys():
    pos2[ea] =  np.array([mx2, my2]) + pos2[ea]*500000

nx.draw_networkx(G1, pos=pos1, node_size=100, node_color='green')
nx.draw_networkx(G2, pos=pos2, node_size=100, node_color='red')
#
# (more code below this line)
Run Code Online (Sandbox Code Playgroud)

输出图:

在此输入图像描述

编辑

替代版本:

import numpy as np
# compute the positions here
# proper scaling (500000) is applied to the original positions ..
# .. obtained from xxx_layout() to get good spreading

pos1 = nx.spring_layout(G1, scale=500000, center=[mx1, my1])
pos2 = nx.circular_layout(G2, scale=500000, center=[mx2, my2])

nx.draw_networkx(G1, pos=pos1, node_size=100, node_color='green')
nx.draw_networkx(G2, pos=pos2, node_size=100, node_color='red')
#
# (more code below this line)
Run Code Online (Sandbox Code Playgroud)