Jos*_*rry 87 sql postgresql query-optimization cbo cost-based-optimizer
我正在处理Postgres表(称为"生命"),其中包含time_stamp,usr_id,transaction_id和lives_remaining列的记录.我需要一个查询,它将为每个usr_id提供最新的lives_remaining总数
例:
time_stamp|lives_remaining|usr_id|trans_id ----------------------------------------- 07:00 | 1 | 1 | 1 09:00 | 4 | 2 | 2 10:00 | 2 | 3 | 3 10:00 | 1 | 2 | 4 11:00 | 4 | 1 | 5 11:00 | 3 | 1 | 6 13:00 | 3 | 3 | 1
因为我需要使用每个给定的usr_id的最新数据来访问该行的其他列,所以我需要一个给出如下结果的查询:
time_stamp|lives_remaining|usr_id|trans_id ----------------------------------------- 11:00 | 3 | 1 | 6 10:00 | 1 | 2 | 4 13:00 | 3 | 3 | 1
如上所述,每个usr_id都可以获得或失去生命,有时这些带时间戳的事件发生得如此紧密,以至于它们具有相同的时间戳!因此,此查询将不起作用:
SELECT b.time_stamp,b.lives_remaining,b.usr_id,b.trans_id FROM
(SELECT usr_id, max(time_stamp) AS max_timestamp
FROM lives GROUP BY usr_id ORDER BY usr_id) a
JOIN lives b ON a.max_timestamp = b.time_stamp
Run Code Online (Sandbox Code Playgroud)
相反,我需要使用time_stamp(first)和trans_id(second)来识别正确的行.然后,我还需要将该信息从子查询传递给主查询,该查询将为相应行的其他列提供数据.这是我已经开始工作的被黑客攻击的查询:
SELECT b.time_stamp,b.lives_remaining,b.usr_id,b.trans_id FROM
(SELECT usr_id, max(time_stamp || '*' || trans_id)
AS max_timestamp_transid
FROM lives GROUP BY usr_id ORDER BY usr_id) a
JOIN lives b ON a.max_timestamp_transid = b.time_stamp || '*' || b.trans_id
ORDER BY b.usr_id
Run Code Online (Sandbox Code Playgroud)
好的,这样可行,但我不喜欢它.它需要查询中的查询,自连接,在我看来,通过抓住MAX找到的具有最大时间戳和trans_id的行可以更简单.表"living"有数千万行要解析,所以我希望这个查询尽可能快速有效.我是RDBM和Postgres的新手,所以我知道我需要有效地使用正确的索引.我对如何优化有点迷茫.
我在这里找到了类似的讨论.我可以执行某种类型的Postgres,相当于Oracle分析函数吗?
有关访问聚合函数(如MAX)使用的相关列信息,创建索引以及创建更好查询的任何建议都将非常感谢!
PS您可以使用以下内容创建我的示例案例:
create TABLE lives (time_stamp timestamp, lives_remaining integer,
usr_id integer, trans_id integer);
insert into lives values ('2000-01-01 07:00', 1, 1, 1);
insert into lives values ('2000-01-01 09:00', 4, 2, 2);
insert into lives values ('2000-01-01 10:00', 2, 3, 3);
insert into lives values ('2000-01-01 10:00', 1, 2, 4);
insert into lives values ('2000-01-01 11:00', 4, 1, 5);
insert into lives values ('2000-01-01 11:00', 3, 1, 6);
insert into lives values ('2000-01-01 13:00', 3, 3, 1);
Run Code Online (Sandbox Code Playgroud)
vla*_*adr 82
在具有158k伪随机行的表上(usr_id均匀分布在0到10k trans_id
之间,均匀分布在0到30之间),
通过下面的查询成本,我指的是Postgres基于成本的优化器的成本估算(使用Postgres的默认xxx_cost
值),这是对所需I/O和CPU资源的加权函数估计; 您可以通过启动PgAdminIII并在查询上运行"查询/解释(F7)"来获取此信息,并将"查询/解释选项"设置为"分析"
usr_id
,trans_id
,time_stamp
))usr_id
,trans_id
)上的复合索引)usr_id
,trans_id
,time_stamp
))usr_id
,EXTRACT(EPOCH FROM time_stamp)
,trans_id
))
usr_id
,time_stamp
,trans_id
)); 它的优点是lives
只扫描一次表,如果你暂时增加(如果需要)work_mem以适应内存中的排序,它将是所有查询中最快的.以上所有时间都包括检索完整的10k行结果集.
您的目标是最小的成本估算和最短的查询执行时间,并强调估计的成本.查询执行可能显着依赖于运行时条件(例如,相关行是否已经完全缓存在内存中),而成本估算则不然.另一方面,请记住,成本估算正是估计值.
在没有负载的情况下在专用数据库上运行时获得最佳查询执行时间(例如,在开发PC上使用pgAdminIII).查询时间将根据实际机器负载/数据访问传播而在生产中变化.当一个查询稍快出现(<20%)比其它但是具有多更高的成本,这将通常是明智的选择具有较高的执行时间,但成本更低.
如果您希望在运行查询时生产机器上没有内存竞争(例如,RDBMS缓存和文件系统缓存不会被并发查询和/或文件系统活动破坏)那么您获得的查询时间独立的(例如开发PC上的pgAdminIII)模式将具有代表性.如果生产系统存在争用,则查询时间将与估计的成本比率成比例地降低,因为具有较低成本的查询不依赖于高速缓存,而具有较高成本的查询将反复重新访问相同的数据(触发)在没有稳定缓存的情况下额外的I/O),例如:
cost | time (dedicated machine) | time (under load) |
-------------------+--------------------------+-----------------------+
some query A: 5k | (all data cached) 900ms | (less i/o) 1000ms |
some query B: 50k | (all data cached) 900ms | (lots of i/o) 10000ms |
Run Code Online (Sandbox Code Playgroud)
ANALYZE lives
创建必要的索引后不要忘记运行一次.
查询#1
-- incrementally narrow down the result set via inner joins
-- the CBO may elect to perform one full index scan combined
-- with cascading index lookups, or as hash aggregates terminated
-- by one nested index lookup into lives - on my machine
-- the latter query plan was selected given my memory settings and
-- histogram
SELECT
l1.*
FROM
lives AS l1
INNER JOIN (
SELECT
usr_id,
MAX(time_stamp) AS time_stamp_max
FROM
lives
GROUP BY
usr_id
) AS l2
ON
l1.usr_id = l2.usr_id AND
l1.time_stamp = l2.time_stamp_max
INNER JOIN (
SELECT
usr_id,
time_stamp,
MAX(trans_id) AS trans_max
FROM
lives
GROUP BY
usr_id, time_stamp
) AS l3
ON
l1.usr_id = l3.usr_id AND
l1.time_stamp = l3.time_stamp AND
l1.trans_id = l3.trans_max
Run Code Online (Sandbox Code Playgroud)
查询#2
-- cheat to obtain a max of the (time_stamp, trans_id) tuple in one pass
-- this results in a single table scan and one nested index lookup into lives,
-- by far the least I/O intensive operation even in case of great scarcity
-- of memory (least reliant on cache for the best performance)
SELECT
l1.*
FROM
lives AS l1
INNER JOIN (
SELECT
usr_id,
MAX(ARRAY[EXTRACT(EPOCH FROM time_stamp),trans_id])
AS compound_time_stamp
FROM
lives
GROUP BY
usr_id
) AS l2
ON
l1.usr_id = l2.usr_id AND
EXTRACT(EPOCH FROM l1.time_stamp) = l2.compound_time_stamp[1] AND
l1.trans_id = l2.compound_time_stamp[2]
Run Code Online (Sandbox Code Playgroud)
2013/01/29更新
最后,从版本8.4开始,Postgres支持窗口函数,这意味着您可以编写简单有效的内容:
查询#3
-- use Window Functions
-- performs a SINGLE scan of the table
SELECT DISTINCT ON (usr_id)
last_value(time_stamp) OVER wnd,
last_value(lives_remaining) OVER wnd,
usr_id,
last_value(trans_id) OVER wnd
FROM lives
WINDOW wnd AS (
PARTITION BY usr_id ORDER BY time_stamp, trans_id
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
);
Run Code Online (Sandbox Code Playgroud)
Mar*_*rco 64
我会建议一个基于DISTINCT ON
(见文档)的干净版本:
SELECT DISTINCT ON (usr_id)
time_stamp,
lives_remaining,
usr_id,
trans_id
FROM lives
ORDER BY usr_id, time_stamp DESC, trans_id DESC;
Run Code Online (Sandbox Code Playgroud)
Ede*_*den 14
Postgressql 9.5 中有一个新选项,称为 DISTINCT ON
SELECT DISTINCT ON (location) location, time, report
FROM weather_reports
ORDER BY location, time DESC;
Run Code Online (Sandbox Code Playgroud)
它消除了重复的行,只留下 ORDER BY 子句定义的第一行。
查看官方文档
我喜欢迈克·伍德豪斯在你提到的另一页上的回答风格。当被最大化的东西只是一个列时,它特别简洁,在这种情况下,子查询只能使用MAX(some_col)
其他GROUP BY
列,但在你的情况下,你有一个由两部分组成的数量要最大化,你仍然可以通过使用来做到这一点ORDER BY
加LIMIT 1
号(由 Quassnoi 完成):
SELECT *
FROM lives outer
WHERE (usr_id, time_stamp, trans_id) IN (
SELECT usr_id, time_stamp, trans_id
FROM lives sq
WHERE sq.usr_id = outer.usr_id
ORDER BY trans_id, time_stamp
LIMIT 1
)
Run Code Online (Sandbox Code Playgroud)
我发现使用行构造函数语法WHERE (a, b, c) IN (subquery)
很好,因为它减少了所需的语言量。
这是另一种方法,碰巧没有使用相关的子查询或GROUP BY.我不是PostgreSQL性能调优的专家,所以我建议你尝试这个和其他人给出的解决方案,看看哪个更适合你.
SELECT l1.*
FROM lives l1 LEFT OUTER JOIN lives l2
ON (l1.usr_id = l2.usr_id AND (l1.time_stamp < l2.time_stamp
OR (l1.time_stamp = l2.time_stamp AND l1.trans_id < l2.trans_id)))
WHERE l2.usr_id IS NULL
ORDER BY l1.usr_id;
Run Code Online (Sandbox Code Playgroud)
我假设trans_id
至少在任何给定的值上都是唯一的time_stamp
.
事实上,这个问题有一个很巧妙的解决方案。假设您想要选择一个区域中每个森林中最大的树。
SELECT (array_agg(tree.id ORDER BY tree_size.size)))[1]
FROM tree JOIN forest ON (tree.forest = forest.id)
GROUP BY forest.id
Run Code Online (Sandbox Code Playgroud)
当您按森林对树木进行分组时,将会出现一个未排序的树木列表,您需要找到最大的一棵。您应该做的第一件事是按行大小对行进行排序,然后选择列表中的第一个。JOIN
它可能看起来效率低下,但如果您有数百万行,它将比包含's 和条件的解决方案快得多WHERE
。
BTW,注意ORDER_BY
forarray_agg
是在 Postgresql 9.0 中引入的
归档时间: |
|
查看次数: |
91165 次 |
最近记录: |