Aas*_*mar 2 for-loop group-by r dplyr summarize
我想使用dplyr
for 循环来总结每个自变量(列)和目标变量。这是我的主要数据框:
Contract_ID Asurion Variable_1 Variable_2 Variable_3 1 年 acf 2 年平均 3N BCG 4 N adf 5 年 bcf 6 Y adf
分组后我得到
a1 <- a %>%
group_by(Asurion,BhvrBnk_Donates_to_Env_Causes) %>%
summarise(counT=n_distinct(CONTRACT_ID)) %>%
mutate(perc=paste0(round(counT/sum(counT)*100,2),"%"))
Asurion Variable_1 CounT perc
Y a 3 75%
Y b 1 25%
N a 1 50%
N b 1 50%
Run Code Online (Sandbox Code Playgroud)
我希望对数据框中存在的每个变量进行汇总,并且我想使用 for 循环来完成此操作。我怎样才能达到我想要的结果
这是我尝试使用的,但似乎不起作用。这是一个学校项目,我需要为此使用 for 循环。请在这里帮助我
categorical <- colnames(a)###where categroical is the names of all columns in a
###I would like to have a for loop for every column in a and summarise in the following way. I would like to store each of the summarisations in a separate dataframe
for (i in categorical) {
a[[i]] <- a %>%
group_by(Asurion,get(i)) %>%
summarise(counT=n_distinct(CONTRACT_ID)) %>%
mutate(perc=paste0(round(counT/sum(counT)*100,2),"%"))
}
Run Code Online (Sandbox Code Playgroud)
你可能并不真正需要for loop
得到你想要的东西。
df<-data.frame(contract_ID = 1:6,
Asurion = c("Y", "Y", "N", "N", "Y", "Y"),
Variable_1 = c("a", "a", "b", "a", "b","a"),
Variable_2 = c("c", "d", "c", "d", "c", "d"),
Variable_3 = c("f", "g", "g", "f", "f", "f"))
pct <- function(x) {
df %>%
group_by(Asurion, {{x}}) %>%
summarise(counT=n_distinct(contract_ID)) %>%
mutate(perc = paste0(round(counT/sum(counT)*100,2),"%"))
}
pct(Variable_1)
pct(Variable_2)
pct(Variable_3)
Run Code Online (Sandbox Code Playgroud)
如果你确实有很多变量,你可以使用类似for loop
或 的东西apply
来迭代最后一位。这是一种选择:
categorical<- df[3:5]
a <- list()
j = 1
for (i in categorical) {
a[[j]] <- df %>%
group_by(Asurion, {{i}}) %>%
summarise(counT=n_distinct(contract_ID)) %>%
mutate(perc = paste0(round(counT/sum(counT)*100,2),"%"))
j = j + 1
}
a
Run Code Online (Sandbox Code Playgroud)
[[1]]
# A tibble: 4 x 4
# Groups: Asurion [2]
Asurion `<fct>` counT perc
<fct> <fct> <int> <chr>
1 N a 1 50%
2 N b 1 50%
3 Y a 3 75%
4 Y b 1 25%
[[2]]
# A tibble: 4 x 4
# Groups: Asurion [2]
Asurion `<fct>` counT perc
<fct> <fct> <int> <chr>
1 N c 1 50%
2 N d 1 50%
3 Y c 2 50%
4 Y d 2 50%
[[3]]
# A tibble: 4 x 4
# Groups: Asurion [2]
Asurion `<fct>` counT perc
<fct> <fct> <int> <chr>
1 N f 1 50%
2 N g 1 50%
3 Y f 3 75%
4 Y g 1 25%
Run Code Online (Sandbox Code Playgroud)
编辑
添加变量名称作为新变量值以响应您的问题以识别group_by
变量。
categorical<- df[3:5]
vnames <- colnames(categorical)
a <- list()
j = 1
for (i in categorical) {
a[[j]] <- df %>%
group_by(Asurion, {{i}}) %>%
summarise(counT=n_distinct(contract_ID)) %>%
mutate(perc = paste0(round(counT/sum(counT)*100,2),"%"))
a[[j]]$vnames = vnames[j]
j = j + 1
}
a
Run Code Online (Sandbox Code Playgroud)