Ale*_*mez 12 c c++ assembly sse
我有一个案例,我需要压缩很多通常很小的值.因此,我用可变长度字节编码压缩它们(ULEB128,具体):
size_t
compress_unsigned_int(unsigned int n, char* data)
{
size_t size = 0;
while (n > 127)
{
++size;
*data++ = (n & 127)|128;
n >>= 7;
}
*data++ = n;
return ++size;
}
Run Code Online (Sandbox Code Playgroud)
有没有更有效的方法(可能使用SSE)?
编辑:在此压缩之后,结果存储到data,取size字节.然后,在下一个unsigned int上调用压缩函数.
您要做的第一件事是针对当前代码测试任何可能的解决方案.
我想你可能想尝试摆脱数据依赖,让处理器同时做更多的工作.
什么是数据依赖? 当数据流经您的函数时,当前值n取决于之前的值n,这取决于之前的值...这是一个长链数据依赖性.在下面的代码中,n永远不会被修改,因此处理器可以"跳过"并同时执行几个不同的操作,而无需等待新的n计算.
// NOTE: This code is actually incorrect, as caf noted.
// The byte order is reversed.
size_t
compress_unsigned_int(unsigned int n, char *data)
{
if (n < (1U << 14)) {
if (n < (1U << 7)) {
data[0] = n;
return 1;
} else {
data[0] = (n >> 7) | 0x80;
data[1] = n & 0x7f;
return 2;
}
} else if (n < (1U << 28)) {
if (n < (1U << 21)) {
data[0] = (n >> 14) | 0x80;
data[1] = ((n >> 7) & 0x7f) | 0x80;
data[2] = n & 0x7f;
return 3;
} else {
data[0] = (n >> 21) | 0x80;
data[1] = ((n >> 14) & 0x7f) | 0x80;
data[2] = ((n >> 7) & 0x7f) | 0x80;
data[3] = n & 0x7f;
return 4;
}
} else {
data[0] = (n >> 28) | 0x80;
data[1] = ((n >> 21) & 0x7f) | 0x80;
data[2] = ((n >> 14) & 0x7f) | 0x80;
data[3] = ((n >> 7) & 0x7f) | 0x80;
data[4] = n & 0x7f;
return 5;
}
}
Run Code Online (Sandbox Code Playgroud)
我通过在0..UINT_MAX的紧密循环中执行它来测试性能.在我的系统上,执行时间是:
(Lower is better)
Original: 100%
caf's unrolled version: 79%
My version: 57%
Run Code Online (Sandbox Code Playgroud)
一些小的调整可能会产生更好的结果,但我怀疑除非你去组装,否则你会得到更多的改进.如果您的整数倾向于在特定范围内,那么您可以使用分析来使编译器将正确的分支预测添加到每个分支.这可能会让你获得一些额外的百分点速度.(编辑:我从重新排序分支中得到8%,但这是一个反常的优化,因为它依赖于每个数字0 ... UINT_MAX以相同的频率出现的事实.我不建议这样做.)
上证所无济于事.SSE被设计为同时对具有相同宽度的多个数据进行操作,众所周知难以使SIMD通过可变长度编码来加速任何事物.(这不一定是不可能的,但它可能是不可能的,你必须非常聪明才能弄明白.)
小智 5
您可能会在 google 协议缓冲区中找到快速实现:
http://code.google.com/p/protobuf/
查看 CodedOutputStream::WriteVarintXXX 方法。
第一种方法可以重写为:
char *start = data;
while (n>=0x80)
{
*data++=(n|0x80);
n>>=7;
}
*data++=n;
return data-start;
Run Code Online (Sandbox Code Playgroud)
根据我的测试,谷歌缓冲区实现是最好的,然后是其他实现。然而,我的测试相当人为,最好在您的应用程序中测试每种方法并选择最好的。所提出的优化在特定数值上效果更好。
这是我的测试应用程序的代码。(请注意,我已从 compress_unsigned_int_google_buf 中删除了代码。您可能会在 google 缓冲区协议的以下文件中找到实现:coded_stream.cc 方法 CodedOutputStream::WriteVarint32FallbackToArrayInline)
size_t compress_unsigned_int(unsigned int n, char* data)
{
size_t size = 0;
while (n > 127)
{
++size;
*data++ = (n & 127)|128;
n >>= 7;
}
*data++ = n;
return ++size;
}
size_t compress_unsigned_int_improved(unsigned int n, char* data)
{
size_t size;
if (n < 0x00000080U) {
size = 1;
goto b1;
}
if (n < 0x00004000U) {
size = 2;
goto b2;
}
if (n < 0x00200000U) {
size = 3;
goto b3;
}
if (n < 0x10000000U) {
size = 4;
goto b4;
}
size = 5;
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b4:
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b3:
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b2:
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b1:
*data = n;
return size;
}
size_t compress_unsigned_int_more_improved(unsigned int n, char *data)
{
if (n < (1U << 14)) {
if (n < (1U << 7)) {
data[0] = n;
return 1;
} else {
data[0] = (n >> 7) | 0x80;
data[1] = n & 0x7f;
return 2;
}
} else if (n < (1U << 28)) {
if (n < (1U << 21)) {
data[0] = (n >> 14) | 0x80;
data[1] = ((n >> 7) & 0x7f) | 0x80;
data[2] = n & 0x7f;
return 3;
} else {
data[0] = (n >> 21) | 0x80;
data[1] = ((n >> 14) & 0x7f) | 0x80;
data[2] = ((n >> 7) & 0x7f) | 0x80;
data[3] = n & 0x7f;
return 4;
}
} else {
data[0] = (n >> 28) | 0x80;
data[1] = ((n >> 21) & 0x7f) | 0x80;
data[2] = ((n >> 14) & 0x7f) | 0x80;
data[3] = ((n >> 7) & 0x7f) | 0x80;
data[4] = n & 0x7f;
return 5;
}
}
size_t compress_unsigned_int_simple(unsigned int n, char *data)
{
char *start = data;
while (n>=0x80)
{
*data++=(n|0x80);
n>>=7;
}
*data++=n;
return data-start;
}
inline size_t compress_unsigned_int_google_buf(unsigned int value, unsigned char* target) {
// This implementation might be found in google protocol buffers
}
#include <iostream>
#include <Windows.h>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
char data[20];
unsigned char udata[20];
size_t size = 0;
__int64 timer;
cout << "Plain copy: ";
timer = GetTickCount64();
size = 0;
for (int i=0; i<536870900; i++)
{
memcpy(data,&i,sizeof(i));
size += sizeof(i);
}
cout << GetTickCount64() - timer << " Size: " << size << endl;
cout << "Original: ";
timer = GetTickCount64();
size = 0;
for (int i=0; i<536870900; i++)
{
size += compress_unsigned_int(i,data);
}
cout << GetTickCount64() - timer << " Size: " << size << endl;
cout << "Improved: ";
timer = GetTickCount64();
size = 0;
for (int i=0; i<536870900; i++)
{
size += compress_unsigned_int_improved(i,data);
}
cout << GetTickCount64() - timer << " Size: " << size << endl;
cout << "More Improved: ";
timer = GetTickCount64();
size = 0;
for (int i=0; i<536870900; i++)
{
size += compress_unsigned_int_more_improved(i,data);
}
cout << GetTickCount64() - timer << " Size: " << size << endl;
cout << "Simple: ";
timer = GetTickCount64();
size = 0;
for (int i=0; i<536870900; i++)
{
size += compress_unsigned_int_simple(i,data);
}
cout << GetTickCount64() - timer << " Size: " << size << endl;
cout << "Google Buffers: ";
timer = GetTickCount64();
size = 0;
for (int i=0; i<536870900; i++)
{
size += compress_unsigned_int_google_buf(i,udata);
}
cout << GetTickCount64() - timer << " Size: " << size << endl;
return 0;
}
Run Code Online (Sandbox Code Playgroud)
在我的带有 Visual C++ 编译器的机器上,我得到以下结果:
普通副本:358 毫秒
原始:2497 毫秒
改进:2215 毫秒
进一步改进:2231 毫秒
简单:2059 毫秒
Google 缓冲区:968 毫秒
如果您的unsigned int值限制在特定范围(例如 32 位),您可以展开循环:
size_t
compress_unsigned_int(unsigned int n, char* data)
{
size_t size;
if (n < 0x00000080U) {
size = 1;
goto b1;
}
if (n < 0x00004000U) {
size = 2;
goto b2;
}
if (n < 0x00200000U) {
size = 3;
goto b3;
}
if (n < 0x10000000U) {
size = 4;
goto b4;
}
size = 5;
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b4:
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b3:
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b2:
*data++ = (n & 0x7f) | 0x80;
n >>= 7;
b1:
*data = n;
return size;
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2805 次 |
| 最近记录: |