如何在python中组合两个整数列

aXa*_*XaY 1 python pandas

我想将具有整数的 2 列值与它们之间的“_”组合起来,并将其设置为我的输出数据集的索引列。“ID”将是我的索引。

样本数据:

输入法

import pandas as pd
import numpy as np
import io

data = '''
ID,Ang,1
23,0,0.88905321
23,10,0.962773412
23,20,1.004187813
23,30,1.008301223
105,0,0.334209544
105,10,0.39043363
105,20,0.434241204
105,30,0.460348427
47,0,0.020669404
47,10,0.032299446
47,20,0.050602654
47,30,0.073371391
'''
df = pd.read_csv(io.StringIO(data),index_col=0)
Run Code Online (Sandbox Code Playgroud)

预期输出:

出去

jez*_*ael 5

将索引和列转换为字符串并连接 by _,也DataFrame.pop用于提取列,因此drop不需要:

df.index = df.index.astype(str) + '_' + df.pop('Ang').astype(str)
Run Code Online (Sandbox Code Playgroud)

或使用DataFrame.set_index

df = df.set_index(df.index.astype(str) + '_' + df.pop('Ang').astype(str))
Run Code Online (Sandbox Code Playgroud)
print (df)
               1
23_0    0.889053
23_10   0.962773
23_20   1.004188
23_30   1.008301
105_0   0.334210
105_10  0.390434
105_20  0.434241
105_30  0.460348
47_0    0.020669
47_10   0.032299
47_20   0.050603
47_30   0.073371
Run Code Online (Sandbox Code Playgroud)

如果还想ID设置索引名称df.index.name

df.index = df.index.astype(str) + df.pop('Ang').astype(str)
df.index.name = 'ID'
Run Code Online (Sandbox Code Playgroud)

对于第二种解决方案,请使用DataFrame.rename_axis

df = (df.set_index(df.index.astype(str) + '_' + df.pop('Ang').astype(str))
        .rename_axis('ID'))
print (df)
               1
ID              
23_0    0.889053
23_10   0.962773
23_20   1.004188
23_30   1.008301
105_0   0.334210
105_10  0.390434
105_20  0.434241
105_30  0.460348
47_0    0.020669
47_10   0.032299
47_20   0.050603
47_30   0.073371
Run Code Online (Sandbox Code Playgroud)

编辑:

如果有带.0值的浮点数,首先尝试转换为整数:

df.index = (df.index.astype('int').astype(str) + '_' + 
            df.pop('Ang').astype('int').astype(str))
Run Code Online (Sandbox Code Playgroud)

如果无法转换为整数,则可能的原因之一是缺少值:

print (df)
        Ang         1
ID                   
23.0    0.0  0.889053
23.0   10.0  0.962773
23.0   20.0  1.004188
23.0   30.0  1.008301
105.0   0.0  0.334210
105.0  10.0  0.390434
105.0  20.0  0.434241
105.0  30.0  0.460348
47.0    NaN  0.020669
NaN    10.0  0.032299
47.0   20.0  0.050603
NaN     NaN  0.073371
Run Code Online (Sandbox Code Playgroud)

pandas 0.24+ 的一种可能解决方案是通过转换为使用整数 naInt64

df.index = (df.index.astype('Int64').astype(str) + '_' + 
            df.pop('Ang').astype('Int64').astype(str))

print (df)
                1
23_0     0.889053
23_10    0.962773
23_20    1.004188
23_30    1.008301
105_0    0.334210
105_10   0.390434
105_20   0.434241
105_30   0.460348
47_nan   0.020669
nan_10   0.032299
47_20    0.050603
nan_nan  0.073371
Run Code Online (Sandbox Code Playgroud)

或者将缺失值替换为一些整数,例如-1,然后将所有值转换为整数:

df.index = (df.index.fillna(-1).astype('int').astype(str) + '_' + 
            df.pop('Ang').fillna(-1).astype('int').astype(str))

print (df)
               1
23_0    0.889053
23_10   0.962773
23_20   1.004188
23_30   1.008301
105_0   0.334210
105_10  0.390434
105_20  0.434241
105_30  0.460348
47_-1   0.020669
-1_10   0.032299
47_20   0.050603
-1_-1   0.073371
Run Code Online (Sandbox Code Playgroud)