如何在R中按组删除开头和结尾的NA的行

Jua*_*uan 5 group-by r delete-row na

我需要删除包含NA的行,但是仅当它们在前(后)行(即在变量的任何数据出现之前(之后))时才会删除。这非常类似于: 如何按类别在data.table列中查找(而不是替换)前导NA,间隙和最终NA, 以及: 如何在R中按条件删除前导行和尾随行?

但是,我需要按照变量“ ID”进行分组。我将在后面的步骤中估算NA之间的数据。

尾随NA也应如此。

初始data.frame如下所示:

df1<-data.frame(ID=(rep(c("C1001","C1008","C1009","C1012"),each=17)),
  Year=(rep(c(1996:2012),4)),x1=(floor(runif(68,20,75))),x2= 
  (floor(runif(68,1,100))))

#Introduce leading / tailing NAs

df1[1:5,3]<-NA
df1[18:23,4]<-NA
df1[35:42,4]<-NA
df1[49:51,3]<-NA
df1[66:68,3]<-NA


#introduce "gap"- NAs
set.seed(123)
df1$x1[rbinom(68,1,0.1)==1]<-NA
df1$x2[rbinom(68,1,0.1)==1]<-NA
Run Code Online (Sandbox Code Playgroud)

输出相当长。这是为了在“空白” NA和“领先/尾随” NA之间做出适当的区分

head(df1,10)

      ID Year x1 x2
1  C1001 1996 NA 40
2  C1001 1997 NA 88
3  C1001 1998 NA 37
4  C1001 1999 NA 29
5  C1001 2000 NA 17
6  C1001 2001 42 18
7  C1001 2002 20 48
8  C1001 2003 30 26
9  C1001 2004 66 22
10 C1001 2005 32 67

Run Code Online (Sandbox Code Playgroud)

输出应按ID组去除前导的NA(请参阅上面的行1:5)。或在以下示例中的第18:23行:

df1[18:28,]

      ID Year x1 x2
18 C1008 1996 33 NA
19 C1008 1997 26 NA
20 C1008 1998 NA NA
21 C1008 1999 51 NA
22 C1008 2000 31 NA
23 C1008 2001 44 NA
24 C1008 2002 NA 56
25 C1008 2003 47 70
26 C1008 2004 39 91
27 C1008 2005 55 62
28 C1008 2006 40 43
Run Code Online (Sandbox Code Playgroud)

最终输出应如下所示(当然取决于所抛出的随机NA!):

      ID Year x1 x2
6  C1001 2001 42 18
7  C1001 2002 20 48
8  C1001 2003 30 26
9  C1001 2004 66 22
10 C1001 2005 32 67
11 C1001 2006 NA  5
12 C1001 2007 24 70
13 C1001 2008 33 35
14 C1001 2009 60 41
15 C1001 2010 66 82
16 C1001 2011 47 91
17 C1001 2012 41 28
24 C1008 2002 NA 56
25 C1008 2003 47 70
26 C1008 2004 39 91
27 C1008 2005 55 62
28 C1008 2006 40 43
29 C1008 2007 39 54
30 C1008 2008 49  6
31 C1008 2009 NA 26
32 C1008 2010 NA 40
33 C1008 2011 42 20
34 C1008 2012 34 83
44 C1009 2005 51 96
45 C1009 2006 66 96
46 C1009 2007 37 NA
47 C1009 2008 58 26
48 C1009 2009 34 22
52 C1012 1996 51 78
53 C1012 1997 70 17
54 C1012 1998 69 41
55 C1012 1999 35 47
56 C1012 2000 37 86
57 C1012 2001 74 92
58 C1012 2002 54 NA
59 C1012 2003 71 67
60 C1012 2004 45 95
61 C1012 2005 42 52
62 C1012 2006 56 58
63 C1012 2007 28 34
64 C1012 2008 51 35
65 C1012 2009 33  2
Run Code Online (Sandbox Code Playgroud)

谢谢一群!

H 1*_*H 1 3

这是一种使用相同想法但向量相反的方法filter_at()来识别前导NA值和尾随值。cumsum()

library(dplyr)

df1 %>%
  group_by(ID) %>%
  filter_at(vars(-ID, -Year), all_vars(pmin(cumsum(!is.na(.)), rev(cumsum(!is.na(rev(.))))) != 0))

# A tibble: 42 x 4
# Groups:   ID [4]
   ID     Year    x1    x2
   <fct> <int> <dbl> <dbl>
 1 C1001  2001    42    18
 2 C1001  2002    20    48
 3 C1001  2003    30    26
 4 C1001  2004    66    22
 5 C1001  2005    32    67
 6 C1001  2006    NA     5
 7 C1001  2007    24    70
 8 C1001  2008    33    35
 9 C1001  2009    60    41
10 C1001  2010    66    82
# ... with 32 more rows
Run Code Online (Sandbox Code Playgroud)