nbr*_*bro 16 python tensorflow python-3.7 tensorflow-probability tensorflow2.0
我收到以下异常
TypeError: An op outside of the function building code is being passed
a "Graph" tensor. It is possible to have Graph tensors
leak out of the function building context by including a
tf.init_scope in your function building code.
For example, the following function will fail:
@tf.function
def has_init_scope():
my_constant = tf.constant(1.)
with tf.init_scope():
added = my_constant * 2
The graph tensor has name: conv2d_flipout/divergence_kernel:0
Run Code Online (Sandbox Code Playgroud)
这也引发了以下异常
tensorflow.python.eager.core._SymbolicException: Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Tensor 'conv2d_flipout/divergence_kernel:0' shape=() dtype=float32>]
Run Code Online (Sandbox Code Playgroud)
运行以下代码时
from __future__ import print_function
import tensorflow as tf
import tensorflow_probability as tfp
def get_bayesian_model(input_shape=None, num_classes=10):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Input(shape=input_shape))
model.add(tfp.layers.Convolution2DFlipout(6, kernel_size=5, padding="SAME", activation=tf.nn.relu))
model.add(tf.keras.layers.Flatten())
model.add(tfp.layers.DenseFlipout(84, activation=tf.nn.relu))
model.add(tfp.layers.DenseFlipout(num_classes))
return model
def get_mnist_data(normalize=True):
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
if tf.keras.backend.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
if normalize:
x_train /= 255
x_test /= 255
return x_train, y_train, x_test, y_test, input_shape
def train():
# Hyper-parameters.
batch_size = 128
num_classes = 10
epochs = 1
# Get the training data.
x_train, y_train, x_test, y_test, input_shape = get_mnist_data()
# Get the model.
model = get_bayesian_model(input_shape=input_shape, num_classes=num_classes)
# Prepare the model for training.
model.compile(optimizer=tf.keras.optimizers.Adam(), loss="sparse_categorical_crossentropy",
metrics=['accuracy'])
# Train the model.
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1)
model.evaluate(x_test, y_test, verbose=0)
if __name__ == "__main__":
train()
Run Code Online (Sandbox Code Playgroud)
问题显然与层有关tfp.layers.Convolution2DFlipout。为什么我会收到这些异常?这是由于我的代码中的逻辑错误还是可能是 TensorFlow 或 TensorFlow Probability 中的错误?这些错误是什么意思?我该如何解决它们?
我正在使用 TensorFlow 2.0.0(默认情况下会急切地执行)。和 TensorFlow Probability 0.8.0 和 Python 3.7.4。我也在这里和这里打开了相关问题。
请不要建议我使用 TensorFlow 1 来懒惰地执行我的代码(即tf.compat.v1.disable_eager_execution()在导入 TensorFlow 后使用,因为我知道这将使上面的代码运行而不会出现上述异常)或显式创建会话或占位符。
这个问题可以通过将该方法experimental_run_tf_function的参数设置为 来部分解决,正如我在我打开的 Github 问题的评论中所写的那样。compileFalse
但是,如果您设置experimental_run_tf_function为False并尝试使用该predict方法,您将收到另一个错误。请参阅此 Github 问题。
编辑(2020年9月28日)
experimental_run_tf_function在最新版本的 TF 中已被删除。然而,在TFP的最新版本中(下面列出了我使用的具体版本),贝叶斯卷积层(至少是使用Flipout估计器的那个)的问题得到了解决。请参阅https://github.com/tensorflow/probability/issues/620#issuecomment-620821990和https://github.com/tensorflow/probability/commit/1574c1d24c5dfa52bdf2387a260cd63a327b1839。
具体来说,我使用了以下版本
tensorflow==2.3.0
tensorflow-probability==0.11.0
Run Code Online (Sandbox Code Playgroud)
我同时使用了密集贝叶斯层和卷积贝叶斯层,在调用时我没有使用。experimental_run_tf_function=Falsecompile
| 归档时间: |
|
| 查看次数: |
8215 次 |
| 最近记录: |