有条件的R中的滚动计算

yan*_*nci 2 r

我有一个数据表,例如:

 CurrOdo        Lat            NextLat       PrevODO        NextOdo
 2.62           30.01115868   30.01115868           
 5.19           30.01116407   30.01116407       
 7.61           30.01116919   30.01116919       
18.82                         30.01119282     7.61        19.06
19.06           30.01119282   30.01119282       
19.35           30.01119339   30.01119339       
20.54                         30.01122998     19.35       81.5
20.81                         30.01122998     20.54       81.5
37.38                         30.01122998     20.81       81.5
81.5            30.01132238   30.01132238   

atable<-data.table(odo = c(2.62,5.19,7.61,18.82,19.06,19.35,20.54,20.81, 37.38,81.5 ), 
Lat = c(30.01115868,30.01116407,30.01116919,NA,30.01119282,30.01119339,NA,NA, NA, 30.01132238),
NextLat=c(30.01115868,30.01116407,30.01116919, 30.01119282, 30.01119282,30.01119339, 
30.01122998,30.01122998,30.01122998,30.01122998 ),
PrevLat=c(NA,NA,NA, NA, NA,NA, NA,NA,NA,NA ),
PrevODO=c(NA,NA,NA, 7.61, NA,NA, 19.35,20.54,20.81,NA ),
NextOdo=c(NA,NA,NA, 19.06, NA,NA, 81.5,81.5,81.5,NA )) 
Run Code Online (Sandbox Code Playgroud)

Lat值是基于以下公式的滚动计算:

纬度:(NextLat- PrevLat)*((CurrODO-PrevODO)/(NextODO-PrevODO))+ PrevLat

如何计算纬度的示例

Row CurrODO 18.82:   (30.01119282- 30.01116919) * (( 18.82 - 7.61) / (19.06 - 7.61)) + 30.01116919
Row CurrODO 20.54:  (30.01122998- 30.01119339) * ((  20.54 - 19.35) / (81.5 - 19.35)) + 30.01119339
Row CurrODO 20.81:   (30.01122998- Lat calc result from 20.54 row) * ((20.81 - 20.54) / (81.5 - 20.54)) + Lat calc result from 20.54 row
Row CurrODO 37.38:   (30.01122998- Lat calc result from 20.81 row) * (( 37.38 - 20.81) / (81.5 - 20.81)) + Lat calc result from 20.81 row
Run Code Online (Sandbox Code Playgroud)

最终结果将是:

CurrOdo     Lat             NextLat         PrevODO     NextOdo
2.62        30.01115868     30.01115868             
5.19        30.01116407     30.01116407             
7.61        30.01116919     30.01116919             
18.82       30.0111923247   30.01119282      7.61        19.06  
19.06       30.01119282     30.01119282             
19.35       30.01119339     30.01119339             
20.54       30.0111940906   30.01122998      19.35       81.5   
20.81       30.0111942496   30.01122998      20.54       81.5   
37.38       30.0112040049   30.01122998      20.81       81.5   
81.5        30.01132238     30.01132238             
Run Code Online (Sandbox Code Playgroud)

我目前正在SQL Server中以循环方式运行此程序,但是这需要很长时间。我也可以将其与R放置在循环中,但是对于大型数据集,它的效果将不佳。我已经坚持了好几天,所以对您的帮助表示感谢!

Wim*_*pel 5

我的回答涉及一个重复循环,尽管您说“ no loops”,但我没有看到其他任何方式(当然可能是R ;-)。
循环应该执行得非常快,但是在我的系统上,大约需要一秒钟的时间来填充1000万行中的NA(请参阅基准)。

Lat的输出与问题中所需的输出匹配。

旁注:
如果您的第一个Lat有价值,那么您可能会遇到问题NA
由于PrevLat第一行的NA始终为NA,因此不会重新计算Lat的first-NA,循环也不会中断。
您(当然)可以在防止这种情况的循环中构建转义路径/中断。我将其保留,以使示例易于理解且简短。

repeat{
  #until there are no more NA in Lat
  if( sum( is.na( atable$Lat ) ) == 0 ){
    break
  }
  #(re)calculate PrevLat
  atable[, PrevLat := shift( Lat, 1, type = "lag" ) ]
  #calculate Lat when PrevLat is known, but Lat is not
  atable[ is.na( Lat ) & !is.na( PrevLat ),
          Lat := (NextLat-PrevLat)*((odo-PrevODO)/(NextOdo-PrevODO))+PrevLat ]
}

#       odo           Lat     NextLat       PrevLat PrevODO NextOdo
# 1:   2.62 30.0111586800 30.01115868            NA      NA      NA
# 2:   5.19 30.0111640700 30.01116407 30.0111586800      NA      NA
# 3:   7.61 30.0111691900 30.01116919 30.0111640700      NA      NA
# 4:  18.82 30.0111923247 30.01119282 30.0111691900    7.61   19.06
# 5:  19.06 30.0111928200 30.01119282 30.0111923247      NA      NA
# 6:  19.35 30.0111933900 30.01119339 30.0111928200      NA      NA
# 7:  20.54 30.0111940906 30.01122998 30.0111933900   19.35   81.50
# 8:  20.81 30.0111942496 30.01122998 30.0111940906   20.54   81.50
# 9:  37.38 30.0112040049 30.01122998 30.0111942496   20.81   81.50
# 10: 81.50 30.0113223800 30.01122998            NA      NA      NA
Run Code Online (Sandbox Code Playgroud)

基准测试

在1000万行的数据表上(atable重复1M次);
在我的系统(具有16Gb内存的+/- 6岁的i5)上,循环大约需要一秒钟来计算每个Lat的值。

dt <- atable[rep(atable[, .I], 1000000)]

system.time(
  repeat{
    #until there are no more NA in Lat
    if( sum( is.na( dt$Lat ) ) == 0 ){
      break
    }
    #(re)calculate PrevLat
    dt[, PrevLat := shift( Lat, 1, type = "lag" ) ]
    #calculate Lat when PrevLat is known
    dt[ is.na( Lat ) & !is.na( PrevLat ),
            Lat := (NextLat- PrevLat ) * ((odo - PrevODO) / (NextOdo - PrevODO)) + PrevLat ]
  }
)

# user  system elapsed 
# 0.90    0.35    1.08
Run Code Online (Sandbox Code Playgroud)

会话信息

R version 3.6.1 (2019-07-05)   
Platform: x86_64-w64-mingw32/x64 (64-bit)    
Running under: Windows 10 x64 (build 18362)      

other attached packages:    [1] data.table_1.12.4
Run Code Online (Sandbox Code Playgroud)

更新::代码说明

代码的作用是:

  1. 它用上一行PrevlatLat-value 填充列
  2. 它标识所有行,其中NALatNA, 并且其中PrevLat具有值(即不是 NA)
  3. 对于步骤2中标识的所有行Lat,请根据您提供的函数计算的值

重复步骤1到3,直到检查的总和is.na(atable$Lat)等于0。满足此条件时,该列中不再有NA值Lat。因此,我们可以repeat使用退出-loop break