我在 lightgbm 中实现了自定义平均误差 (MAE) 损失。梯度不为零,但损失保持不变。怎么可能呢?
我的实现:
def abs_obj(preds, dtrain):
y_true = dtrain.get_label()
a = preds - y_true
grad = np.sign(a)
hess = np.zeros(len(a))
return grad, hess
def abs_eval(preds, dtrain):
y_true = dtrain.get_label()
loss = np.abs(preds - y_true).sum()
return "error", loss, False
Run Code Online (Sandbox Code Playgroud)
一个最小的可重复示例:损失保持不变。
dtrain = pd.DataFrame({'x':np.random.rand(100),
'y':np.random.rand(100)})
ytrain = dtrain.x + 2 * dtrain.y
dval = dtrain
yval = ytrain
lgb_train = lgb.Dataset(dtrain, ytrain)
lgb_valid = lgb.Dataset(dval, yval)
params = {'objective':None,
'learning_rate':30,
'num_leaves':33}
clf = lgb.train(params,
lgb_train,
valid_sets=[lgb_valid],
num_boost_round=10,
verbose_eval=1,
fobj=abs_obj,
feval=abs_eval)
Run Code Online (Sandbox Code Playgroud)