Fat*_*ici 9 python amazon-web-services boto3 amazon-sagemaker
我正在尝试在免费套餐 AWS Sagemaker 中创建 XGBoost 模型。我收到以下错误:
\n\n“ResourceLimitExceeded:调用 CreateEndpoint 操作时发生错误 (ResourceLimitExceeded):帐户级服务限制“端点使用的ml.m5.xlarge”为 0 个实例,当前利用率为 0 个实例,请求增量为 1 个实例”。。
\n\n我应该使用什么正确的 train_instance_type ?
\n\n这是我的代码:
\n\n# import libraries\nimport boto3, re, sys, math, json, os, sagemaker, urllib.request\nfrom sagemaker import get_execution_role\nimport numpy as np \nimport pandas as pd \nimport matplotlib.pyplot as plt \nfrom IPython.display import Image \nfrom IPython.display import display \nfrom time import gmtime, strftime \nfrom sagemaker.predictor import csv_serializer \n\n# Define IAM role\nrole = get_execution_role()\nprefix = \'sagemaker/DEMO-xgboost-dm\'\ncontainers = {\'us-west-2\': \'433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest\',\n \'us-east-1\': \'811284229777.dkr.ecr.us-east-1.amazonaws.com/xgboost:latest\',\n \'us-east-2\': \'825641698319.dkr.ecr.us-east-2.amazonaws.com/xgboost:latest\',\n \'eu-west-1\': \'685385470294.dkr.ecr.eu-west-1.amazonaws.com/xgboost:latest\'} # each region has its XGBoost container\nmy_region = boto3.session.Session().region_name # set the region of the instance\n\n# Create an instance of the XGBoost model (an estimator), and define the model\xe2\x80\x99s hyperparameters.\n# Note: train_instance_type=\'ml.m5.large\' has 0 free credits! Use one of https://aws.amazon.com/sagemaker/pricing/ \nsess = sagemaker.Session()\nxgb = sagemaker.estimator.Estimator(containers[my_region],role, train_instance_count=1, train_instance_type=\'ml.m5.xlarge\',output_path=\'s3://{}/{}/output\'.format(\'my_s3_bucket\', prefix),sagemaker_session=sess)\nxgb.set_hyperparameters(max_depth=1,eta=0.2,gamma=4,min_child_weight=6,subsample=0.8,silent=0,objective=\'binary:logistic\',num_round=100)\n# Train the model using gradient optimization on a ml.m4.xlarge instance\n# After a few minutes, you should start to see the training logs being generated.\nxgb.fit({\'train\': s3_input_train})\nRun Code Online (Sandbox Code Playgroud)\n\n在这一步我看到的是:
\n\n2019-10-22 06:32:51 Starting - Starting the training job...\n2019-10-22 06:33:00 Starting - Launching requested ML instances......\n2019-10-22 06:33:54 Starting - Preparing the instances for training...\n2019-10-22 06:34:41 Downloading - Downloading input data...\n2019-10-22 06:35:22 Training - Training image download completed. Training in progress..Arguments: train\n[2019-10-22:06:35:22:INFO] Running standalone xgboost training.\n[2019-10-22:06:35:22:INFO] Path /opt/ml/input/data/validation does not exist!\n[2019-10-22:06:35:22:INFO] File size need to be processed in the node: 3.38mb. Available memory size in the node: 8089.9mb\n[2019-10-22:06:35:22:INFO] Determined delimiter of CSV input is \',\'\n[06:35:22] S3DistributionType set as FullyReplicated\n[06:35:22] 28831x59 matrix with 1701029 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=,\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[0]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[1]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[2]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[3]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[4]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[5]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[6]#011train-error:0.102182\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[7]#011train-error:0.10839\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[8]#011train-error:0.102737\n[06:35:22] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1\n[9]#011train-error:0.107697\nRun Code Online (Sandbox Code Playgroud)\n\n然后当我部署这个时:
\n\n# Deploy the model on a server and create an endpoint that you can access\nxgb_predictor = xgb.deploy(initial_instance_count=1,instance_type=\'ml.m5.xlarge\')\n---------------------------------------------------------------------------\nResourceLimitExceeded Traceback (most recent call last)\n<ipython-input-38-6d149f3edc98> in <module>()\n 1 # Deploy the model on a server and create an endpoint that you can access\n----> 2 xgb_predictor = xgb.deploy(initial_instance_count=1,instance_type=\'ml.m5.xlarge\')\n\n~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/estimator.py in deploy(self, initial_instance_count, instance_type, accelerator_type, endpoint_name, use_compiled_model, update_endpoint, wait, model_name, kms_key, **kwargs)\n 559 tags=self.tags,\n 560 wait=wait,\n--> 561 kms_key=kms_key,\n 562 )\n 563 \n\n~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/model.py in deploy(self, initial_instance_count, instance_type, accelerator_type, endpoint_name, update_endpoint, tags, kms_key, wait)\n 464 else:\n 465 self.sagemaker_session.endpoint_from_production_variants(\n--> 466 self.endpoint_name, [production_variant], tags, kms_key, wait\n 467 )\n 468 \n\n~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/session.py in endpoint_from_production_variants(self, name, production_variants, tags, kms_key, wait)\n 1361 \n 1362 self.sagemaker_client.create_endpoint_config(**config_options)\n-> 1363 return self.create_endpoint(endpoint_name=name, config_name=name, tags=tags, wait=wait)\n 1364 \n 1365 def expand_role(self, role):\n\n~/anaconda3/envs/python3/lib/python3.6/site-packages/sagemaker/session.py in create_endpoint(self, endpoint_name, config_name, tags, wait)\n 975 \n 976 self.sagemaker_client.create_endpoint(\n--> 977 EndpointName=endpoint_name, EndpointConfigName=config_name, Tags=tags\n 978 )\n 979 if wait:\n\n~/anaconda3/envs/python3/lib/python3.6/site-packages/botocore/client.py in _api_call(self, *args, **kwargs)\n 355 "%s() only accepts keyword arguments." % py_operation_name)\n 356 # The "self" in this scope is referring to the BaseClient.\n--> 357 return self._make_api_call(operation_name, kwargs)\n 358 \n 359 _api_call.__name__ = str(py_operation_name)\n\n~/anaconda3/envs/python3/lib/python3.6/site-packages/botocore/client.py in _make_api_call(self, operation_name, api_params)\n 659 error_code = parsed_response.get("Error", {}).get("Code")\n 660 error_class = self.exceptions.from_code(error_code)\n--> 661 raise error_class(parsed_response, operation_name)\n 662 else:\n 663 return parsed_response\n\nResourceLimitExceeded: An error occurred (ResourceLimitExceeded) when calling the CreateEndpoint operation: The account-level service limit \'ml.m5.xlarge for endpoint usage\' is 0 Instances, with current utilization of 0 Instances and a request delta of 1 Instances. Please contact AWS support to request an increase for this limit.\nRun Code Online (Sandbox Code Playgroud)\n\n编辑:尝试ml.m4.xlarge实例:
\n\n当我使用 ml.m4.xlarge 时,我收到相同的消息“ResourceLimitExceeded:调用 CreateEndpoint 操作时发生错误 (ResourceLimitExceeded):端点使用的帐户级服务限制 \'ml.m4.xlarge\' 为 0”实例,当前利用率为 0 个实例,请求增量为 1 个实例。请联系 AWS 支持以请求增加此限制。”
\nSai*_*ibō 11
请求增加 ml.m5.xlarge 限制的步骤
此手动支持票可能需要 48 小时才能转完。(对我来说,一天后我收到支持团队的回复,实例限制更改为 1)
| 归档时间: |
|
| 查看次数: |
19122 次 |
| 最近记录: |