hro*_*okr 11 python numpy unique pandas
我如何在 pandas 或 numpy 中获取一列列表的唯一值,以便第二列来自
会导致'action', 'crime', 'drama'.
我能想出的最接近(但非功能性)的解决方案是:
 genres = data['Genre'].unique()
但这可以预见地导致 TypeError 说明列表如何不可散列。
TypeError: unhashable type: 'list'
Set 似乎是个好主意,但是
 genres = data.apply(set(), columns=['Genre'], axis=1)
但也会导致
TypeError: set() takes no keyword arguments
PMe*_*nde 17
您可以使用explode:
data = pd.DataFrame([
    {
        "title": "The Godfather: Part II",
        "genres": ["crime", "drama"],
        "director": "Fracis Ford Coppola"
    },
    {
        "title": "The Dark Knight",
        "genres": ["action", "crime", "drama"],
        "director": "Christopher Nolan"
    }
])
# Changed from data.explode("genres")["genres"].unique() as suggested by rafaelc
data["genres"].explode().unique() 
结果是:
array(['crime', 'drama', 'action'], dtype=object)
raf*_*elc 14
如果您只想找到唯一值,我建议使用itertools.chain.from_iterable连接所有这些列表
import itertools
>>> np.unique([*itertools.chain.from_iterable(df.Genre)])
array(['action', 'crime', 'drama'], dtype='<U6')
甚至更快
>>> set(itertools.chain.from_iterable(df.Genre))
{'action', 'crime', 'drama'}
Timingsdf = pd.DataFrame({'Genre':[['crime','drama'],['action','crime','drama']]})
df = pd.concat([df]*10000)
%timeit set(itertools.chain.from_iterable(df.Genre))
100 loops, best of 3: 2.55 ms per loo
    
%timeit set([x for y in df['Genre'] for x in y])
100 loops, best of 3: 4.09 ms per loop
%timeit np.unique([*itertools.chain.from_iterable(df.Genre)])
100 loops, best of 3: 12.8 ms per loop
%timeit np.unique(df['Genre'].sum())
1 loop, best of 3: 1.65 s per loop
%timeit set(df['Genre'].sum())
1 loop, best of 3: 1.66 s per loop