Sar*_*rah 3 r group-summaries skew kurtosis
我有一张看起来像这样的表:
start_table <- data.frame("Water_Year" = c("1903", "1903", "1904", "1904"), "X" = c(13, 11, 12,
15), "Day" = c(1, 2, 1, 2))
Run Code Online (Sandbox Code Playgroud)
('Day' 列不参与我的偏斜和峰度计算,它只是在我的表中)
我想要一个计算按年份分组的偏斜和峰度值的表格:
end_table <- data.frame("Water_Year" = c("1903", "1904"), "Skew" = c("skew_number_here",
"skew_number_here"), "Kurtosis" = c("kurtosis_number_here", "kurtosis_number_here"))
Run Code Online (Sandbox Code Playgroud)
我无法弄清楚如何按年份对其进行分组以执行这些计算。
一个选项是group_by/summarise
library(dplyr)
library(moments)
start_table %>%
group_by(Water_Year) %>%
summarise(Skew = skewness(X), Kurtosis = kurtosis(X))
Run Code Online (Sandbox Code Playgroud)
您还可以定义偏度/峰度函数:
kurtosis <- function(x) {
m4 <- mean((x - mean(x))^4)
kurtosis <- m4/(sd(x)^4) - 3
kurtosis
}
skewness <- function(x) {
m3 <- mean((x - mean(x))^3)
skewness <- m3/(sd(x)^3)
skewness
}
Run Code Online (Sandbox Code Playgroud)
然后,将其应用于base R:
aggregate(X ~ Water_Year,
FUN = function(x) c(kurtosis = kurtosis(x), skewness = skewness(x)),
data = start_table)
Water_Year X.kurtosis X.skewness
1 1903 -2.75 0.00
2 1904 -2.75 0.00
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1500 次 |
| 最近记录: |