Sri*_*r.v 2 java multithreading reentrantreadwritelock reentrantlock
我创建了 1000 个线程来递增,1000 个线程来递减,1000 个线程来读取值。
每个增量线程,值增加25000倍。
每个递减线程,值减少25000倍。
每个读取线程读取该值 50000 次。
所以总的来说,读操作是占主导地位的。
读取值时放置 ReadLock
WriteLock 用于递增和递减值的方法。
观察结果:ReentrantReadWriteLock 大约需要 13000 ms Lock 大约需要 3000 ms。预期:ReentrantReadWriteLock 提供比 ReentrantLock 更快的性能。
顺便说一句:我个人认为使用 getCounter 方法时不需要锁定/同步(只需读取值)
import java.util.ArrayList;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Main {
public static void main(String[] args) throws InterruptedException {
ArrayList<Thread> reads = new ArrayList<>();
ArrayList<Thread> increments = new ArrayList<>();
ArrayList<Thread> decrements = new ArrayList<>();
Resources resources = new Resources();
long start = System.currentTimeMillis();
for (int i = 0; i < 1000; i++) {
Thread read = new Read(resources);
Thread increment = new Increment(resources);
Thread decrement = new Decrement(resources);
reads.add(read);
increments.add(increment);
decrements.add(decrement);
read.start();
increment.start();
decrement.start();
}
for (int i = 0; i < 1000; i++) {
reads.get(i).join();
increments.get(i).join();
decrements.get(i).join();
}
System.out.println(resources.getCounter());
System.out.println(System.currentTimeMillis() - start);
}
private static abstract class UserThread extends Thread {
protected Resources resources;
public UserThread(Resources resources) {
this.resources = resources;
}
}
private static class Read extends UserThread {
public Read(Resources resources) {
super(resources);
}
public void run() {
for (int i = 0; i < 50000; i++) {
resources.getCounter();
}
}
}
private static class Increment extends UserThread {
public Increment(Resources resources) {
super(resources);
}
public void run() {
for (int i = 0; i < 25000; i++) {
resources.increment();
}
}
}
private static class Decrement extends UserThread {
public Decrement(Resources resources) {
super(resources);
}
public void run() {
for (int i = 0; i < 25000; i++) {
resources.decrement();
}
}
}
private static class Resources {
private ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
private ReentrantReadWriteLock.WriteLock writeLock = reentrantReadWriteLock.writeLock();
private ReentrantReadWriteLock.ReadLock readLock = reentrantReadWriteLock.readLock();
private ReentrantLock lock = new ReentrantLock();
public int getCounter() {
readLock.lock();
try {
return counter;
} finally {
readLock.unlock();
}
}
private int counter = 0;
public void increment() {
writeLock.lock();
try {
counter++;
} finally {
writeLock.unlock();
}
}
public void decrement() {
writeLock.lock();
try {
counter--;
} finally {
writeLock.unlock();
}
}
}
}
Run Code Online (Sandbox Code Playgroud)
这些类型的锁(读写)通常经过优化,适合许多读取器和单个或几个写入器。他们经常在操作上旋转,期望读取速度快而写入量很少。此外,它们还针对公平性或请求的 FIFO 处理进行了优化,以避免线程停滞。
你做的恰恰相反。您执行许多写入操作,这会导致过度旋转和其他复杂的方法,适合多读少写的场景。
简单的锁很简单。它们只是在准备好时阻塞所有线程,并且不会发生旋转。它们的缺点是,当它们唤醒多个线程以让它们再次休眠时,会引起雪崩效应。