与 ReentrantLock 相比,ReentrantReadWriteLock 的性能非常差

Sri*_*r.v 2 java multithreading reentrantreadwritelock reentrantlock

我创建了 1000 个线程来递增,1000 个线程来递减,1000 个线程来读取值。

每个增量线程,值增加25000倍。

每个递减线程,值减少25000倍。

每个读取线程读取该值 50000 次。

所以总的来说,读操作是占主导地位的。

读取值时放置 ReadLock

WriteLock 用于递增和递减值的方法。

观察结果:ReentrantReadWriteLock 大约需要 13000 ms Lock 大约需要 3000 ms。预期:ReentrantReadWriteLock 提供比 ReentrantLock 更快的性能。

顺便说一句:我个人认为使用 getCounter 方法时不需要锁定/同步(只需读取值)

import java.util.ArrayList;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Main {
    public static void main(String[] args) throws InterruptedException {

        ArrayList<Thread> reads = new ArrayList<>();
        ArrayList<Thread> increments = new ArrayList<>();
        ArrayList<Thread> decrements = new ArrayList<>();
        Resources resources = new Resources();
        long start = System.currentTimeMillis();
        for (int i = 0; i < 1000; i++) {
            Thread read = new Read(resources);
            Thread increment = new Increment(resources);
            Thread decrement = new Decrement(resources);
            reads.add(read);
            increments.add(increment);
            decrements.add(decrement);
            read.start();
            increment.start();
            decrement.start();
        }
        for (int i = 0; i < 1000; i++) {
            reads.get(i).join();
            increments.get(i).join();
            decrements.get(i).join();
        }
        System.out.println(resources.getCounter());
        System.out.println(System.currentTimeMillis() - start);
    }

    private static abstract class UserThread extends Thread {
        protected Resources resources;

        public UserThread(Resources resources) {
            this.resources = resources;
        }

    }

    private static class Read extends UserThread {

        public Read(Resources resources) {
            super(resources);
        }

        public void run() {
            for (int i = 0; i < 50000; i++) {
                resources.getCounter();

            }

        }
    }

    private static class Increment extends UserThread {

        public Increment(Resources resources) {
            super(resources);
        }

        public void run() {
            for (int i = 0; i < 25000; i++) {
                resources.increment();

            }

        }
    }

    private static class Decrement extends UserThread {

        public Decrement(Resources resources) {
            super(resources);
        }

        public void run() {
            for (int i = 0; i < 25000; i++) {
                resources.decrement();

            }

        }
    }

    private static class Resources {

        private ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();

        private ReentrantReadWriteLock.WriteLock writeLock = reentrantReadWriteLock.writeLock();
        private ReentrantReadWriteLock.ReadLock readLock = reentrantReadWriteLock.readLock();
        private ReentrantLock lock = new ReentrantLock();

        public int getCounter() {
            readLock.lock();
            try {
                return counter;
            } finally {
                readLock.unlock();
            }

        }

        private int counter = 0;

        public void increment() {
            writeLock.lock();
            try {
                counter++;
            } finally {
                writeLock.unlock();
            }
        }

        public void decrement() {
            writeLock.lock();
            try {
                counter--;
            } finally {
                writeLock.unlock();
            }
        }

    }

}
Run Code Online (Sandbox Code Playgroud)

Nic*_*ick 5

这些类型的锁(读写)通常经过优化,适合许多读取器和单个或几个写入器。他们经常在操作上旋转,期望读取速度快而写入量很少。此外,它们还针对公平性或请求的 FIFO 处理进行了优化,以避免线程停滞。

你做的恰恰相反。您执行许多写入操作,这会导致过度旋转和其他复杂的方法,适合多读少写的场景。

简单的锁很简单。它们只是在准备好时阻塞所有线程,并且不会发生旋转。它们的缺点是,当它们唤醒多个线程以让它们再次休眠时,会引起雪崩效应。