非矩形四边形上并集的交集

h s*_*h s 5 python object-detection computer-vision

我正在研究停车位检测的问题。为了检测空的停车位,我使用了交集而不是联合。但是,停车位并不总是矩形的。所以,我做了一个标注工具,可以绘制各种形状的多边形。现在,我想知道是否有任何提供 IOU 功能的 python 库?如果没有,还有其他选择吗?

在此处输入图片说明

iba*_*ond 8

您应该使用shapelyPython 库:

from shapely.geometry import box, Polygon

# Define Each polygon 
pol1_xy = [[130, 27], [129.52, 27], [129.45, 27.1], [130.13, 26]]
pol2_xy = [[30, 27.200001], [129.52, 27.34], [129.45, 27.1], [130.13, 26.950001]]
polygon1_shape = Polygon(pol1_xy)
polygon2_shape = Polygon(pol2_xy)

# Calculate Intersection and union, and tne IOU
polygon_intersection = polygon1_shape.intersection(polygon2_shape).area
polygon_union = polygon1_shape.union(polygon2_shape).area
IOU = polygon_intersection / polygon_union 
Run Code Online (Sandbox Code Playgroud)


Lel*_*rth 6

ibarrond 的答案可以稍作改进。找到两个四边形的并集是一项代价高昂的操作。相反,我们可以通过首先添加两个四边形的面积来找到并集的面积。这将过多计算四边形重叠的面积,但我们可以通过减去我们已经计算过的相交面积来纠正此问题:

def IOU(pol1_xy, pol2_xy):
    # Define each polygon
    polygon1_shape = Polygon(pol1_xy)
    polygon2_shape = Polygon(pol2_xy)

    # Calculate intersection and union, and the IOU
    polygon_intersection = polygon1_shape.intersection(polygon2_shape).area
    polygon_union = polygon1_shape.area + polygon2_shape.area - polygon_intersection
    return polygon_intersection / polygon_union
Run Code Online (Sandbox Code Playgroud)

以下代码验证此改进是否给出相同的结果,然后对两个版本进行计时。函数IOU1包含ibarrond的代码,函数IOU2包含改进。

from shapely.geometry import Polygon
from timeit import timeit

def IOU1(pol1_xy, pol2_xy):
    # Define each polygon
    polygon1_shape = Polygon(pol1_xy)
    polygon2_shape = Polygon(pol2_xy)

    # Calculate intersection and union, and the IOU
    polygon_intersection = polygon1_shape.intersection(polygon2_shape).area
    polygon_union = polygon1_shape.union(polygon2_shape).area
    return polygon_intersection / polygon_union

def IOU2(pol1_xy, pol2_xy):
    # Define each polygon
    polygon1_shape = Polygon(pol1_xy)
    polygon2_shape = Polygon(pol2_xy)

    # Calculate intersection and union, and tne IOU
    polygon_intersection = polygon1_shape.intersection(polygon2_shape).area
    polygon_union = polygon1_shape.area + polygon2_shape.area - polygon_intersection
    return polygon_intersection / polygon_union

if __name__ == '__main__':
    # Define test coordinates:
    pol1_xy = [[130, 27], [129.52, 27], [129.45, 27.1], [130.13, 26]]
    pol2_xy = [[30, 27.200001], [129.52, 27.34], [129.45, 27.1], [130.13, 26.950001]]

    # Test that results are the same (except for minor rounding differences):
    assert abs(IOU1(pol1_xy, pol2_xy) - IOU2(pol1_xy, pol2_xy)) < 1e-16

    # Determine speeds of both functions:
    t1=timeit('IOU1(pol1_xy, pol2_xy)', number=100000,
              setup='from __main__ import IOU1, pol1_xy, pol2_xy')
    t2=timeit('IOU2(pol1_xy, pol2_xy)', number=100000,
              setup='from __main__ import IOU2, pol1_xy, pol2_xy')
    print('time for IOU1:  %s' %t1)
    print('time for IOU2:  %s' %t2)
Run Code Online (Sandbox Code Playgroud)

这是我得到的结果:

time for IOU1:  20.0208661
time for IOU2:  11.0288122
Run Code Online (Sandbox Code Playgroud)

请注意,确切的时间将根据硬件和当前后台活动而有所不同。