ira*_*ira 1 r data.table oversampling
我想从 a 中有效地按组进行随机样本data.table,但应该可以为每个组抽取不同的比例。
如果我想从每个组中抽取分数,我可以从这个问题和相关sampling_fraction答案中得到启发,做一些类似的事情:
DT = data.table(a = sample(1:2), b = sample(1:1000,20))
group_sampler <- function(data, group_col, sample_fraction){
# this function samples sample_fraction <0,1> from each group in the data.table
# inputs:
# data - data.table
# group_col - column(s) used to group by
# sample_fraction - a value between 0 and 1 indicating what % of each group should be sampled
data[,.SD[sample(.N, ceiling(.N*sample_fraction))],by = eval(group_col)]
}
# what % of data should be sampled
sampling_fraction = 0.5
# perform the sampling
sampled_dt <- group_sampler(DT, 'a', sampling_fraction)
Run Code Online (Sandbox Code Playgroud)
但是,如果我想从第 1 组中抽取 10%,从第 2 组中抽取 50%,该怎么办?
您可以使用.GRP但来确保匹配正确的组。您可能希望将其定义group_col为因子变量。
group_sampler <- function(data, group_col, sample_fractions) {
# this function samples sample_fraction <0,1> from each group in the data.table
# inputs:
# data - data.table
# group_col - column(s) used to group by
# sample_fraction - a value between 0 and 1 indicating what % of each group should be sampled
stopifnot(length(sample_fractions) == uniqueN(data[[group_col]]))
data[, .SD[sample(.N, ceiling(.N*sample_fractions[.GRP]))], keyby = group_col]
}
Run Code Online (Sandbox Code Playgroud)
编辑回应chinsoon12的评论:
函数的最后一行会更安全(而不是依赖正确的顺序):
data[, .SD[sample(.N, ceiling(.N*sample_fractions[[unlist(.BY)]]))], keyby = group_col]
Run Code Online (Sandbox Code Playgroud)
然后你sample_fractions作为一个命名向量传递:
group_sampler(DT, 'a', sample_fractions= c(x = 0.1, y = 0.9))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
927 次 |
| 最近记录: |