从Hive SQL中的第n个存储桶获取所有记录

bai*_*a s 3 hive bucket bigdata apache-spark apache-spark-sql

如何从配置单元中的第n个存储桶中获取所有记录。

从存储桶9中选择* from bucketTable;

Shu*_*Shu 5

您可以通过不同的方法来实现:

方法1:通过stored locationdesc formatted <db>.<tab_name>

然后9th bucket直接从中读取文件HDFS filesystem

(要么)

方法2:使用input_file_name()

然后9th bucket使用文件名仅过滤数据

Example:

Approach-1:

Scala:

val df = spark.sql("desc formatted <db>.<tab_name>")

//get table location in hdfs path
val loc_hdfs = df.filter('col_name === "Location").select("data_type").collect.map(x => x(0)).mkString

//based on your table format change the read format
val ninth_buk = spark.read.orc(s"${loc_hdfs}/000008_0*")

//display the data
ninth_buk.show()
Run Code Online (Sandbox Code Playgroud)

Pyspark:

from pyspark.sql.functions import *

df = spark.sql("desc formatted <db>.<tab_name>")

loc_hdfs = df.filter(col("col_name") == "Location").select("data_type").collect()[0].__getattr__("data_type")

ninth_buk = spark.read.orc(loc_hdfs + "/000008_0*")

ninth_buk.show()
Run Code Online (Sandbox Code Playgroud)

Approach-2:

Scala:

 val df = spark.read.table("<db>.<tab_name>")

//add input_file_name 
 val df1 = df.withColumn("filename",input_file_name())

#filter only the 9th bucket filename and select only required columns
val ninth_buk = df1.filter('filename.contains("000008_0")).select(df.columns.head,df.columns.tail:_*)

ninth_buk.show()
Run Code Online (Sandbox Code Playgroud)

pyspark:

from pyspark.sql.functions import *

 df = spark.read.table("<db>.<tab_name>")

df1 = df.withColumn("filename",input_file_name())

ninth_buk = df1.filter(col("filename").contains("000008_0")).select(*df.columns)

ninth_buk.show()
Run Code Online (Sandbox Code Playgroud)

如果您有大量数据,则不建议使用Approach-2,因为我们需要对整个数据帧进行过滤。


In Hive:

set hive.support.quoted.identifiers=none;
select `(fn)?+.+` from (
                        select *,input__file__name fn from table_name)e 
 where e.fn like '%000008_0%';
Run Code Online (Sandbox Code Playgroud)