yew*_*onn 8 python tensorflow2.0
我有 Ubuntu 18.04。Python 3.7.3,Tensorflow 2.0.0
这是我的 cuda 版本:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
Run Code Online (Sandbox Code Playgroud)
我的电脑是 UX430UQ,显卡是 GeForce 940MX
这是 nvidia-smi 的输出:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce 940MX On | 00000000:01:00.0 Off | N/A |
| N/A 45C P0 N/A / N/A | 283MiB / 2004MiB | 9% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1014 G /usr/lib/xorg/Xorg 24MiB |
| 0 1164 G /usr/bin/gnome-shell 47MiB |
| 0 1440 G /usr/lib/xorg/Xorg 123MiB |
| 0 1615 G /usr/bin/gnome-shell 84MiB |
+-----------------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
这是我的输出run sudo apt-get install cuda:
Reading package lists...
Building dependency tree...
Reading state information...
cuda is already the newest version (10.1.243-1).
0 upgraded, 0 newly installed, 0 to remove and 138 not upgraded.
Run Code Online (Sandbox Code Playgroud)
这是我运行时的输出 tf.test.is_gpu_available()
2019-10-08 21:04:37.186069: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] 成功从 SysFS 读取的 NUMA 节点具有负值 (-1),但必须至少有一个 NUMA 节点,因此返回NUMA 节点零
2019-10-08 21:04:37.188434:我 tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] 发现设备 0 具有以下属性:
名称:GeForce 940MX 主要:5 次要:0 memoryClockRate(GHz):1.2415
pciBusID:0000:01:00.0
2019-10-08 21:04:37.188863: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] 无法加载动态库“libcudart.so.10.0”;dlerror: libcudart.so.10.0: 无法打开共享对象文件:没有那个文件或目录;LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
2019-10-08 21:04:37.189156: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] 无法加载动态库“libcublas.so.10.0”;dlerror: libcublas.so.10.0: 无法打开共享对象文件:没有那个文件或目录;LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
2019-10-08 21:04:37.189426: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] 无法加载动态库“libcufft.so.10.0”;dlerror: libcufft.so.10.0: 无法打开共享对象文件:没有那个文件或目录;LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
2019-10-08 21:04:37.189687: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] 无法加载动态库“libcurand.so.10.0”;dlerror: libcurand.so.10.0: 无法打开共享对象文件:没有那个文件或目录;LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
2019-10-08 21:04:37.189946: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] 无法加载动态库“libcusolver.so.10.0”;dlerror: libcusolver.so.10.0: 无法打开共享对象文件:没有那个文件或目录;LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
2019-10-08 21:04:37.190202: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] 无法加载动态库“libcusparse.so.10.0”;dlerror: libcusparse.so.10.0: 无法打开共享对象文件:没有那个文件或目录;LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
2019-10-08 21:04:37.190236: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] 成功打开动态库 libcudnn.so.7
2019-10-08 21:04:37.190244: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] 无法打开某些 GPU 库。如果您想使用 GPU,请确保正确安装了上述缺失的库。按照https://www.tensorflow.org/install/gpu 上的指南,了解如何为您的平台下载和设置所需的库。
跳过注册 GPU 设备...
2019-10-08 21:04:37.190261: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] 具有强度 1 边缘矩阵的设备互连 StreamExecutor:
2019-10-08 21:04:37.190268:我张量流/核心/common_runtime/gpu/gpu_device.cc:1165] 0
2019-10-08 21:04:37.190276: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
| 归档时间: |
|
| 查看次数: |
10988 次 |
| 最近记录: |