Kil*_*a94 5 c# machine-learning ml.net
我正在尝试创建一个应用程序,它根据用户的生活方式和药物的限制来预测服药的时间。
我的意思是:
我从患者那里得到的信息包括:
• 他/她吃他/她的饭菜的次数和时间
• 他/她什么时候醒来和入睡
• 他/她必须服用多少药片
从药物的限制来看:
• 药物是否应空腹食用
• 药物是否应随餐或不随餐食用
• 患者是否需要在进餐和服药之间休息(尚未显示在下面的屏幕上) )
• 等
示例数据集:https :
//ibb.co/Gvry945
我应该使用什么类型的模型/力学/算法来预测服药时间?回归是正确的吗?我需要预测 1,2,3,4 有时是 5 列。
我根据以下内容编写了一个简单的代码:
https
://docs.microsoft.com/pl-pl/dotnet/machine-learning/tutorials/predict-prices 如何使用回归任务使用 ML.NET 预测多个标签?
它工作正常,我可以预测超过 1 列。但是,我的问题仍然是空白单元格。当我试图从该数据中预测某些内容时,它总是显示错误的值,并且只有在所有单元格都完成后才能正常工作。
那么,我应该将我的数据集分散到更少的数据集(所有单元格都完整)吗?例如:
https
:
//ibb.co/m8HVPvb 当我只预测 TimeToTakeMedicine1
https://ibb.co/qNk9xQL
当我预测 TimeToTakeMedicine1 和 TimeToTakeMedicine2 时
https://ibb.co/GnRc1c0
当我预测 TimeToTakeMedicine1、TimeToTakeMedicine2、TimeToTakeMedicine3 等时。
有没有更简单更好的方法来解决这个问题?
预测 TimeToTakeMedicine1、TimeToTakeMedicine2、TimeToTakeMedicine3 的工作代码(为了简单起见,我去掉了 OnEmptyStomach、WithMeal 和 IsPossible)
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Trainers;
namespace NextTry
{
class Program
{
static readonly string _trainDataPath = Path.Combine(Environment.CurrentDirectory, "DataFolder", "DataForPredictT1T2T3.csv");
static void Main(string[] args)
{
MLContext mlContext = new MLContext(seed: 0);
var model = Train(mlContext, _trainDataPath);
TestSinglePrediction(mlContext, model);
}
public static ITransformer Train(MLContext mlContext, string dataPath)
{
IDataView dataView = mlContext.Data.LoadFromTextFile<Medicine>(dataPath, hasHeader: true, separatorChar: ',');
var pipelineForMeal1 = mlContext.Transforms.CopyColumns(outputColumnName: "Label", inputColumnName: "TimeToTakeMedicine1")
.Append(mlContext.Transforms.Concatenate("Features", "MealTime1", "MealTime2", "MealTime3", "MealCount", "ActivityHoursWakeUp", "ActivityHoursSleep", "PillsCount"))
.Append(mlContext.Regression.Trainers.FastTree())
.Append(mlContext.Transforms.CopyColumns(outputColumnName: "timeToTakeMedicine1", inputColumnName: "Score"));
var pipelineForMeal2 = mlContext.Transforms.CopyColumns(outputColumnName: "Label", inputColumnName: "TimeToTakeMedicine2")
.Append(mlContext.Transforms.Concatenate("Features", "MealTime1", "MealTime2", "MealTime3", "MealCount", "ActivityHoursWakeUp", "ActivityHoursSleep", "PillsCount"))
.Append(mlContext.Regression.Trainers.FastTree())
.Append(mlContext.Transforms.CopyColumns(outputColumnName: "timeToTakeMedicine2", inputColumnName: "Score"));
var pipelineForMeal3 = mlContext.Transforms.CopyColumns(outputColumnName: "Label", inputColumnName: "TimeToTakeMedicine3")
.Append(mlContext.Transforms.Concatenate("Features", "MealTime1", "MealTime2", "MealTime3", "MealCount", "ActivityHoursWakeUp", "ActivityHoursSleep", "PillsCount"))
.Append(mlContext.Regression.Trainers.FastTree())
.Append(mlContext.Transforms.CopyColumns(outputColumnName: "timeToTakeMedicine3", inputColumnName: "Score"));
var model = pipelineForMeal1
.Append(pipelineForMeal2)
.Append(pipelineForMeal3)
.Fit(dataView);
return model;
}
private static void TestSinglePrediction(MLContext mlContext, ITransformer model)
{
var predictionFunction = mlContext.Model.CreatePredictionEngine<Medicine, MedicineTimeTakeMedicinePrediction>(model);
var medicineSample = new Medicine()
{
MealTime1 = 6,
MealTime2 = 12,
MealTime3 = 22,
MealCount = 3,
PillsCount = 3
};
var prediction = predictionFunction.Predict(medicineSample);
Console.WriteLine($"Predicted TimeToTakePill: {prediction.TimeToTakeMedicine1:0.####} ");
Console.WriteLine($"Predicted TimeToTakePill: {prediction.TimeToTakeMedicine2:0.####}");
Console.WriteLine($"Predicted TimeToTakePill: {prediction.TimeToTakeMedicine3:0.####}");
Console.ReadKey();
}
}
}
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.ML.Data;
namespace NextTry
{
public class Medicine
{
[LoadColumn(0)]
public float MealTime1 { get; set; }
[LoadColumn(1)]
public float MealTime2 { get; set; }
[LoadColumn(2)]
public float MealTime3 { get; set; }
[LoadColumn(3)]
public float MealCount { get; set; }
[LoadColumn(4)]
public float ActivityHoursWakeUp { get; set; }
[LoadColumn(5)]
public float ActivityHoursSleep { get; set; }
[LoadColumn(6)]
public float PillsCount { get; set; }
[LoadColumn(7)]
public float TimeToTakeMedicine1 { get; set; }
[LoadColumn(8)]
public float TimeToTakeMedicine2 { get; set; }
[LoadColumn(9)]
public float TimeToTakeMedicine3 { get; set; }
}
public class MedicineTimeTakeMedicinePrediction
{
[ColumnName("timeToTakeMedicine1")]
public float TimeToTakeMedicine1 { get; set; }
[ColumnName("timeToTakeMedicine2")]
public float TimeToTakeMedicine2 { get; set; }
[ColumnName("timeToTakeMedicine3")]
public float TimeToTakeMedicine3 { get; set; }
}
}
Run Code Online (Sandbox Code Playgroud)