如何在python中使用字符串轴而不是整数来绘制混淆矩阵

use*_*470 28 python matplotlib

我正在关注如何在Matplotlib中绘制混淆矩阵的前一个主题.脚本如下:

from numpy import *
import matplotlib.pyplot as plt
from pylab import *

conf_arr = [[33,2,0,0,0,0,0,0,0,1,3], [3,31,0,0,0,0,0,0,0,0,0], [0,4,41,0,0,0,0,0,0,0,1], [0,1,0,30,0,6,0,0,0,0,1], [0,0,0,0,38,10,0,0,0,0,0], [0,0,0,3,1,39,0,0,0,0,4], [0,2,2,0,4,1,31,0,0,0,2], [0,1,0,0,0,0,0,36,0,2,0], [0,0,0,0,0,0,1,5,37,5,1], [3,0,0,0,0,0,0,0,0,39,0], [0,0,0,0,0,0,0,0,0,0,38] ]

norm_conf = []
for i in conf_arr:
        a = 0
        tmp_arr = []
        a = sum(i,0)
        for j in i:
                tmp_arr.append(float(j)/float(a))
        norm_conf.append(tmp_arr)

plt.clf()
fig = plt.figure()
ax = fig.add_subplot(111)
res = ax.imshow(array(norm_conf), cmap=cm.jet, interpolation='nearest')


for i,j in ((x,y) for x in xrange(len(conf_arr))
            for y in xrange(len(conf_arr[0]))):
    ax.annotate(str(conf_arr[i][j]),xy=(i,j))

cb = fig.colorbar(res)
savefig("confusion_matrix.png", format="png")
Run Code Online (Sandbox Code Playgroud)

我想改变轴显示的字母串,表示(A,B,C,...),而不是整数(0,1,2,3,..10).怎么能这样做.谢谢.

穆萨

ami*_*des 61

这是我猜你想要的: 在此输入图像描述

import numpy as np
import matplotlib.pyplot as plt

conf_arr = [[33,2,0,0,0,0,0,0,0,1,3], 
            [3,31,0,0,0,0,0,0,0,0,0], 
            [0,4,41,0,0,0,0,0,0,0,1], 
            [0,1,0,30,0,6,0,0,0,0,1], 
            [0,0,0,0,38,10,0,0,0,0,0], 
            [0,0,0,3,1,39,0,0,0,0,4], 
            [0,2,2,0,4,1,31,0,0,0,2],
            [0,1,0,0,0,0,0,36,0,2,0], 
            [0,0,0,0,0,0,1,5,37,5,1], 
            [3,0,0,0,0,0,0,0,0,39,0], 
            [0,0,0,0,0,0,0,0,0,0,38]]

norm_conf = []
for i in conf_arr:
    a = 0
    tmp_arr = []
    a = sum(i, 0)
    for j in i:
        tmp_arr.append(float(j)/float(a))
    norm_conf.append(tmp_arr)

fig = plt.figure()
plt.clf()
ax = fig.add_subplot(111)
ax.set_aspect(1)
res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet, 
                interpolation='nearest')

width, height = conf_arr.shape

for x in xrange(width):
    for y in xrange(height):
        ax.annotate(str(conf_arr[x][y]), xy=(y, x), 
                    horizontalalignment='center',
                    verticalalignment='center')

cb = fig.colorbar(res)
alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
plt.xticks(range(width), alphabet[:width])
plt.yticks(range(height), alphabet[:height])
plt.savefig('confusion_matrix.png', format='png')
Run Code Online (Sandbox Code Playgroud)


Joe*_*ton 13

只需使用matplotlib.pyplot.xticksmatplotlib.pyplot.yticks.

例如

import matplotlib.pyplot as plt
import numpy as np

plt.imshow(np.random.random((5,5)), interpolation='nearest')
plt.xticks(np.arange(0,5), ['A', 'B', 'C', 'D', 'E'])
plt.yticks(np.arange(0,5), ['F', 'G', 'H', 'I', 'J'])

plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


Wag*_*ano 6

这是您想要的:

from string import ascii_uppercase
from pandas import DataFrame
import numpy as np
import seaborn as sn
from sklearn.metrics import confusion_matrix

y_test = np.array([1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5])
predic = np.array([1,2,4,3,5, 1,2,4,3,5, 1,2,3,4,4])

columns = ['class %s' %(i) for i in list(ascii_uppercase)[0:len(np.unique(y_test))]]

confm = confusion_matrix(y_test, predic)
df_cm = DataFrame(confm, index=columns, columns=columns)

ax = sn.heatmap(df_cm, cmap='Oranges', annot=True)
Run Code Online (Sandbox Code Playgroud)

示例图像输出在这里: 在此处输入图片说明


如果您想要更完整的混淆矩阵作为Matlab默认值,并具有总计(最后一行和最后一列)以及每个单元格上的百分比,请参见下面的此模块。

因为我在Internet上搜索并没有在python上找到像这样的混淆矩阵,所以我开发了具有这些改进的矩阵并在git上共享。


参考:

https://github.com/wcipriano/pretty-print-confusion-matrix

输出示例在这里: 在此处输入图片说明

  • 用户包含了相关代码,并为此付出了很多努力,代码是相关且良好的。你被其他人否决了,因为你的英语语法不够好,无法在 stackoverflow 上获得声誉。通过英语拼写和语法检查器检查你的单词对未来是一个好主意。 (2认同)

小智 6

要获得看起来像 sklearn 为您创建的图表,只需使用他们的代码!

from sklearn.metrics import confusion_matrix
# I use the sklearn metric source for this one
from sklearn.metrics import ConfusionMatrixDisplay
classNames = np.arange(1,6)
# Convert to discrete values for confusion matrix
regPredictionsCut = pd.cut(regPredictionsTDF[0], bins=5, labels=classNames, right=False)
cm = confusion_matrix(y_test, regPredictionsCut)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=classNames)
disp.plot()
Run Code Online (Sandbox Code Playgroud)

我通过访问https://scikit-learn.org/stable/modules/ generated/sklearn.metrics.plot_confusion_matrix.html 并单击“源”链接来解决这个问题。

这是结果图:

通过 Sklearn 源代码生成的混淆矩阵