Jyo*_*Pal 6 machine-learning python-3.x scikit-learn
我正在使用管道来预处理数据。这是我的代码。我想将字符串列转换为日期时间并将空字符串 (' '), "NA" 替换np.nan为其他一些列。我正在尝试FunctionTransformer在我的管道步骤中使用。
df = pd.DataFrame({'categoric1':['Apple', ' ', 'Cherry', 'Apple', 'Cherry', 'Cherry', 'Orange'],
'numeric1':[1, 2, 3, 4, 5, 6, 7],
'numeric2':[7,8,9,"N.A", np.nan, ' ', 12],
'date1': ['20001103','20011109', '19910929', '19920929', '20051107', '20081103', '20101105']})
cat_features = ['categoric1']
num_features = ['numeric1', 'numeric2']
date_features = ['date1']
print(df.head(7))
def replace_with_nan(X):
X_copy = X.copy()
X_copy[X_copy == ' '] = np.nan
X_copy[X_copy == 'N.A'] = np.nan
return X_copy.values
def square_values(X):
return X**2
def convert_to_datetime(df):
df['date1'] = pd.to_datetime(df['date1'], errors='raise') #df['date1'].astype(str) + "Z"
return df
cat_transformer = Pipeline(steps=[
('ft_replace_nan', FunctionTransformer(replace_with_nan, validate=False)),
('imputer', SimpleImputer(missing_values=np.nan, strategy='most_frequent')),
('encoder', OneHotEncoder(categories=[['Apple', 'Orange', 'Cherry']], handle_unknown='error'))
])
num_transformer = Pipeline(steps=[
('ft_replace_nan', FunctionTransformer(replace_with_nan, validate=False)),
# ('ft_square_values', FunctionTransformer(square_values, validate=False)), #Another FunctionTransformer -----1
('imputer', SimpleImputer(missing_values=np.nan, strategy='median')),
('scaler', StandardScaler())
])
date_transformer = Pipeline(steps=[
('convert_to_datetime', FunctionTransformer(convert_to_datetime, validate=False))
])
preprocessor = ColumnTransformer(remainder='passthrough', transformers = [
('num', num_transformer, num_features),
('cat', cat_transformer, cat_features),
('date', date_transformer, date_features)
])
# ft_fill_nan = FunctionTransformer(replace_with_nan, validate=False)
# transformed_data = ft_fill_nan.fit_transform(df)
# print(transformed_data)
# ft_convert_datetime = FunctionTransformer(convert_to_datetime, validate=False)
# transformed_data = ft_convert_datetime.fit_transform(df)
# print(transformed_data)
transformed_data = preprocessor.fit_transform(df)
print(transformed_data)
Run Code Online (Sandbox Code Playgroud)
问题:
preprocessor.fit_transform(df),出现如下错误。你能帮我解决这个问题吗?#Another FunctionTransformer -----1。是否可以?如果是这样,如何?convert_to_datetime(df)上面方法中实际数据的状态
。我还想在不访问实际date1列的情况下使其通用。我怎样才能做到这一点?invalid type promotion由于异构数据类型,您会收到错误。Sklearn 正在尝试在内部使用 numpy 结构数组进行连接。解决方案是从日期中提取必要的特征,例如给定日期的月份。您需要更改的是convert_to_datetime
def convert_to_datetime(data):
return data.apply(lambda x: [pd.to_datetime(date, format="%Y%m%d").month for date in x])
Run Code Online (Sandbox Code Playgroud)
通过这种方式,您不必在函数内对列名称进行硬编码。
结果:
('ft_square_values', FunctionTransformer(lambda x: x*2, validate=False)), #Another FunctionTransformer -----1
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
500 次 |
| 最近记录: |