将 Scikit-Learn OneHotEncoder 与 Pandas DataFrame 结合使用

dd.*_*dd. 12 python machine-learning pandas scikit-learn one-hot-encoding

我正在尝试使用 Scikit-Learn 的 OneHotEncoder 将 Pandas DataFrame 中包含字符串的列替换为单热编码的等效项。我下面的代码不起作用:

from sklearn.preprocessing import OneHotEncoder
# data is a Pandas DataFrame

jobs_encoder = OneHotEncoder()
jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
Run Code Online (Sandbox Code Playgroud)

它产生以下错误(列表中的字符串被省略):

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-91-3a1f568322f5> in <module>()
      3 jobs_encoder = OneHotEncoder()
      4 jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
----> 5 data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))

/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in transform(self, X)
    730                                        copy=True)
    731         else:
--> 732             return self._transform_new(X)
    733 
    734     def inverse_transform(self, X):

/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform_new(self, X)
    678         """New implementation assuming categorical input"""
    679         # validation of X happens in _check_X called by _transform
--> 680         X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
    681 
    682         n_samples, n_features = X_int.shape

/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform(self, X, handle_unknown)
    120                     msg = ("Found unknown categories {0} in column {1}"
    121                            " during transform".format(diff, i))
--> 122                     raise ValueError(msg)
    123                 else:
    124                     # Set the problematic rows to an acceptable value and

ValueError: Found unknown categories ['...', ..., '...'] in column 0 during transform
Run Code Online (Sandbox Code Playgroud)

以下是一些示例数据:

data['Profession'] =

0         unkn
1         safe
2         rece
3         unkn
4         lead
          ... 
111988    indu
111989    seni
111990    mess
111991    seni
111992    proj
Name: Profession, Length: 111993, dtype: object
Run Code Online (Sandbox Code Playgroud)

我到底做错了什么?

Ami*_*ine 16

OneHotEncoder将分类整数特征编码为 one-hot 数值数组。如果,其Transform方法返回一个稀疏矩阵sparse=True,否则返回一个二维数组。

您不能将二维数组(或稀疏矩阵)转换为Pandas Series。您必须为每个类别创建一个 Pandas Serie(Pandas 数据框中的一列)。

我会推荐pandas.get_dummies代替:

data = pd.get_dummies(data,prefix=['Profession'], columns = ['Profession'], drop_first=True)
Run Code Online (Sandbox Code Playgroud)

编辑:

使用 Sklearn OneHotEncoder:

transformed = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
#Create a Pandas DataFrame of the hot encoded column
ohe_df = pd.DataFrame(transformed, columns=jobs_encoder.get_feature_names())
#concat with original data
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
Run Code Online (Sandbox Code Playgroud)

其他选项:如果您正在使用GridSearch进行超参数调整,建议使用ColumnTransformerFeatureUnion with Pipeline或直接使用make_column_transformer

  • 我希望能够pickle实例以便将来在新数据上使用它,这就是为什么我想使用OneHotEncoder,这不能用get_dummies来完成,对吗? (3认同)

dd.*_*dd. 15

结果证明 Scikit-Learns LabelBinarizer在将数据转换为单热编码格式方面给了我更好的运气,在Amnie 的解决方案的帮助下,我的最终代码如下

import pandas as pd
from sklearn.preprocessing import LabelBinarizer

jobs_encoder = LabelBinarizer()
jobs_encoder.fit(data['Profession'])
transformed = jobs_encoder.transform(data['Profession'])
ohe_df = pd.DataFrame(transformed)
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
Run Code Online (Sandbox Code Playgroud)


Kri*_*ern 10

下面是 Kaggle Learn 建议的方法。不要认为目前有一种更简单的方法可以从原始的 pandas 转换DataFrame为 one-hot 编码的DataFrame

# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))

# One-hot encoding removed index; put it back
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index

# Remove categorical columns (will replace with one-hot encoding)
numeric_X_train = X_train.drop(low_cardinality_cols, axis=1)
numeric_X_valid = X_valid.drop(low_cardinality_cols, axis=1)

# Add one-hot encoded columns to numerical features
new_X_train = pd.concat([numeric_X_train, OH_cols_train], axis=1)
new_X_valid = pd.concat([numeric_X_valid, OH_cols_valid], axis=1)
print(new_X_train)
Run Code Online (Sandbox Code Playgroud)