带有 Pandas 数据帧千位分隔符的 XlsxWriter

Mic*_*ael 4 python excel pandas xlsxwriter

据我所知,Xlsxwriter 可能是使用千位分隔符格式化数字的最佳软件包。我已经阅读了很多次 xlsxwriter 文档,仍然很困惑,我认为其他人可能也有同样的问题,因此我在这里发布我的问题。我有一个 pandas 数据框 DF_T_1_EQUITY_CHANGE_Summary_ADE,我想将它们导出到 Excel 并使用格式化千位分隔符。

Row Labels               object
Sum of EQUITY_CHANGE    float64
Sum of TRUE_PROFIT      float64
Sum of total_cost       float64
Sum of FOREX VOL        float64
Sum of BULLION VOL      float64
Oil                     float64
Sum of CFD VOL           object
Sum of BITCOIN VOL       object
Sum of DEPOSIT          float64
Sum of WITHDRAW         float64
Sum of IN/OUT           float64
dtype: object
Run Code Online (Sandbox Code Playgroud)

数据帧 DF_T_1_EQUITY_CHANGE_Summary_ADE 是明确的,除了第一列行标签是对象,其他都是数字。因此,我使用 xlsxwriter 将数据框写入 Excel:

import xlsxwriter 
num_fmt = workbook.add_format({'num_format': '#,###'}) #set the separator I want
writer = pd.ExcelWriter('ADE_CN.xlsx', engine='xlsxwriter')
DF_T_1_EQUITY_CHANGE_Summary_ADE.to_excel(writer, sheet_name='Sheet1')
workbook=writer.book
worksheet = writer.sheets['Sheet1']
worksheet.set_column('C:M', None, num_fmt)
writer.save()
Run Code Online (Sandbox Code Playgroud)

但是,我没有得到千位分隔符,Excel中的结果如下:

    Row Labels  Sum of EQUITY_CHANGE    Sum of TRUE_PROFIT  Sum of total_cost   Sum of FOREX VOL    Sum of BULLION VOL  Oil Sum of CFD VOL  Sum of BITCOIN VOL  Sum of DEPOSIT  Sum of WITHDRAW Sum of IN/OUT
0   ADE A BOOK USD  778.17  517.36  375.9   37.79   0.33    0   0   0   1555.95 0   1555.95
1   ADE B BOOK USD  6525.51 403.01  529.65  35.43   14.3    0   0   0   500 -2712.48    -2212.48
2   ADE A BOOK AUD  537.7   189.63  147 12.25   0   0   0   0   0   0   0
3   ADE B BOOK AUD  -22235.71   7363.14 224.18  2.69    9.16    0.2 0   0   5000    -103    4897
Run Code Online (Sandbox Code Playgroud)

有人可以提供解决方案吗,非常感谢。

jmc*_*ara 8

它应该有效。在获得对工作簿对象的引用后,您需要add_format()稍后在代码中移动它。这是一个例子:

import pandas as pd


# Create a Pandas dataframe from some data.
df = pd.DataFrame({'Data': [1234.56, 234.56, 5678.92]})

# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas.xlsx', engine='xlsxwriter')

# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name='Sheet1')

# Get the xlsxwriter workbook and worksheet objects.
workbook  = writer.book
worksheet = writer.sheets['Sheet1']

# Set a currency number format for a column.
num_format = workbook.add_format({'num_format': '#,###'})
worksheet.set_column('B:B', None, num_format)

# Close the Pandas Excel writer and output the Excel file.
writer.save()

Run Code Online (Sandbox Code Playgroud)

输出:

在此输入图像描述