Igg*_*ass 5 python python-3.x pandas scikit-learn
我想将数据集类别的权重矩阵传递给神经网络。
from sklearn.utils import class_weight
class_weights = class_weight.compute_class_weight('balanced',
np.unique(y_train),
y_train)
Run Code Online (Sandbox Code Playgroud)
但是我收到以下错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-93-9452aecf4030> in <module>
2 class_weights = class_weight.compute_class_weight('balanced',
3 np.unique(y_train),
----> 4 y_train)
~\AppData\Roaming\Python\Python36\site-packages\sklearn\utils\class_weight.py in compute_class_weight(class_weight, classes, y)
39
40 if set(y) - set(classes):
---> 41 raise ValueError("classes should include all valid labels that can "
42 "be in y")
43 if class_weight is None or len(class_weight) == 0:
ValueError: classes should include all valid labels that can be in y
Run Code Online (Sandbox Code Playgroud)
我不明白,这是我的y_train数据集的一部分:
grade_A grade_B grade_C grade_D grade_E grade_F grade_G
689526 0 1 0 0 0 0 0
523913 1 0 0 0 0 0 0
266122 0 0 1 0 0 0 0
362552 0 0 0 1 0 0 0
Run Code Online (Sandbox Code Playgroud)
类[A,B,C,D,E,F]包括可以放入 y 中的所有有效标签!
我尝试在数据帧上使用 .values:
from sklearn.utils import class_weight
class_weights = class_weight.compute_class_weight('balanced',
np.unique(y_train.values),
y_train.values)
Run Code Online (Sandbox Code Playgroud)
然而它返回了:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-25-c2342f04abd9> in <module>
2 class_weights = class_weight.compute_class_weight('balanced',
3 np.unique(y_train.values),
----> 4 y_train.values)
~\AppData\Roaming\Python\Python36\site-packages\sklearn\utils\class_weight.py in compute_class_weight(class_weight, classes, y)
38 from ..preprocessing import LabelEncoder
39
---> 40 if set(y) - set(classes):
41 raise ValueError("classes should include all valid labels that can "
42 "be in y")
TypeError: unhashable type: 'numpy.ndarray
Run Code Online (Sandbox Code Playgroud)
如果我输入 print(type(y_train)) 我会得到以下答案:
<class 'pandas.core.frame.DataFrame'>
Run Code Online (Sandbox Code Playgroud)
根据文档:
sklearn.utils.class_weight.compute_class_weight(class_weight, classes, y)
classes : ndarray
Array of the classes occurring in the data, as given by np.unique(y_org) with y_org the original class labels.
y : array-like, shape (n_samples,)
Array of original class labels per sample;
Run Code Online (Sandbox Code Playgroud)
如果你逃跑type(y_train),你会得到什么?
您可以将数据帧转换为数组(将 pandas 数据帧转换为 NumPy 数组):
ytrain = y_train.values
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6770 次 |
| 最近记录: |