购物车Python性能比较

Sne*_* 40 4 python-3.x julia

我正在将手推车和杆子仿真与python 3.7和Julia 1.2进行比较。在python中,仿真被编写为类对象,如下所示,而在Julia中,它只是一个函数。我得到一致的0.2秒时间来解决使用Julia的问题,这比python慢​​得多。我对朱莉娅的理解不够深刻,无法理解为什么。我的猜测是它与编译或建立循环的方式有关。

import math
import random
from collections import namedtuple

RAD_PER_DEG = 0.0174533
DEG_PER_RAD = 57.2958

State = namedtuple('State', 'x x_dot theta theta_dot')

class CartPole:
    """ Model for the dynamics of an inverted pendulum
    """
    def __init__(self):
        self.gravity   = 9.8
        self.masscart  = 1.0
        self.masspole  = 0.1
        self.length    = 0.5   # actually half the pole's length
        self.force_mag = 10.0
        self.tau       = 0.02  # seconds between state updates

        self.x         = 0
        self.x_dot     = 0
        self.theta     = 0
        self.theta_dot = 0

    @property
    def state(self):
        return State(self.x, self.x_dot, self.theta, self.theta_dot)

    def reset(self, x=0, x_dot=0, theta=0, theta_dot=0):
        """ Reset the model of a cartpole system to it's initial conditions
        "   theta is in radians
        """
        self.x         = x
        self.x_dot     = x_dot
        self.theta     = theta
        self.theta_dot = theta_dot

    def step(self, action):
        """ Move the state of the cartpole simulation forward one time unit
        """
        total_mass      = self.masspole + self.masscart
        pole_masslength = self.masspole * self.length

        force           = self.force_mag if action else -self.force_mag
        costheta        = math.cos(self.theta)
        sintheta        = math.sin(self.theta)

        temp = (force + pole_masslength * self.theta_dot ** 2 * sintheta) / total_mass

        # theta acceleration
        theta_dotdot = (
            (self.gravity * sintheta - costheta * temp)
            / (self.length *
               (4.0/3.0 - self.masspole * costheta * costheta /
                total_mass)))

        # x acceleration
        x_dotdot = temp - pole_masslength * theta_dotdot * costheta / total_mass

        self.x         += self.tau * self.x_dot
        self.x_dot     += self.tau * x_dotdot
        self.theta     += self.tau * self.theta_dot
        self.theta_dot += self.tau * theta_dotdot

        return self.state
Run Code Online (Sandbox Code Playgroud)

为了运行模拟,使用了以下代码

from cartpole import CartPole
import time
cp = CartPole()
start = time.time()
for i in range(100000):
      cp.step(True)
end = time.time()
print(end-start)
Run Code Online (Sandbox Code Playgroud)

朱莉娅代码是

function cartpole(state, action)
"""Cart and Pole simulation in discrete time
Inputs: cartpole( state, action )
state: 1X4 array [cart_position, cart_velocity, pole_angle, pole_velocity]
action: Boolean True or False where true is a positive force and False is a negative force
"""

gravity   = 9.8
masscart  = 1.0
masspole  = 0.1
l    = 0.5   # actually half the pole's length
force_mag = 10.0
tau       = 0.02  # seconds between state updates

# x         = 0
# x_dot     = 0
# theta     = 0
# theta_dot = 0

x         = state[1]
x_dot     = state[2]
theta     = state[3]
theta_dot = state[4]


total_mass = masspole + masscart
pole_massl = masspole * l

if action == 0
 force = force_mag
else
 force = -force_mag
end

costheta = cos(theta)
sintheta = sin(theta)

temp = (force + pole_massl * theta_dot^2 * sintheta) / total_mass

# theta acceleration
theta_dotdot = (gravity * sintheta - costheta * temp)/ (l *(4.0/3.0 - masspole * costheta * costheta / total_mass))

# x acceleration
x_dotdot = temp - pole_massl * theta_dotdot * costheta / total_mass

x         += tau * x_dot
x_dot     += tau * x_dotdot
theta     += tau * theta_dot
theta_dot += tau * theta_dotdot

new_state = [x x_dot theta theta_dot]

return new_state

end
Run Code Online (Sandbox Code Playgroud)

运行代码是

@time include("cartpole.jl")


function run_sim()
"""Runs the cartpole simulation
No inputs or ouputs
Use with @time run_sim() for timing puposes.
"""
 state = [0 0 0 0]
 for i = 1:100000
  state = cartpole( state, 0)
  #print(state)
  #print("\n")
end
end

@time run_sim()
Run Code Online (Sandbox Code Playgroud)

Ste*_*ski 8

您的Python版本在我的笔记本电脑上耗时0.21秒。以下是同一系统上原始Julia版本的计时结果:

julia> @time run_sim()
  0.222335 seconds (654.98 k allocations: 38.342 MiB)

julia> @time run_sim()
  0.019425 seconds (100.00 k allocations: 10.681 MiB, 37.52% gc time)

julia> @time run_sim()
  0.010103 seconds (100.00 k allocations: 10.681 MiB)

julia> @time run_sim()
  0.012553 seconds (100.00 k allocations: 10.681 MiB)

julia> @time run_sim()
  0.011470 seconds (100.00 k allocations: 10.681 MiB)

julia> @time run_sim()
  0.025003 seconds (100.00 k allocations: 10.681 MiB, 52.82% gc time)
Run Code Online (Sandbox Code Playgroud)

第一次运行包括JIT编译,大约需要0.2s,之后每次运行需要10-20ms。这分解为约10ms的实际计算时间和约10s的每四个调用触发一次的垃圾收集时间。这意味着Julia的速度比Python快10到20倍,不包括JIT编译时间,这对于直接移植来说还不错。

为什么在基准测试时不计算JIT时间?因为您实际上并不关心运行诸如基准之类的快速程序所花费的时间。您正在安排一些小的基准测试问题,以推断在速度确实很重要的情况下运行较大问题所需的时间。JIT编译时间与您要编译的代码量成正比,而不与问题的大小成正比。因此,当解决您实际上关心的较大问题时,JIT编译仍将仅花费0.2s,这对于大型问题而言执行时间可以忽略不计。

现在,让我们看看如何使Julia代码更快。这实际上非常简单:在状态中使用元组而不是行向量。因此,将状态初始化为state = (0, 0, 0, 0),然后类似地更新状态:

new_state = (x, x_dot, theta, theta_dot)
Run Code Online (Sandbox Code Playgroud)

就是这样,否则代码是相同的。对于此版本,计时为:

julia> @time run_sim()
  0.132459 seconds (479.53 k allocations: 24.020 MiB)

julia> @time run_sim()
  0.008218 seconds (4 allocations: 160 bytes)

julia> @time run_sim()
  0.007230 seconds (4 allocations: 160 bytes)

julia> @time run_sim()
  0.005379 seconds (4 allocations: 160 bytes)

julia> @time run_sim()
  0.008773 seconds (4 allocations: 160 bytes)
Run Code Online (Sandbox Code Playgroud)

第一次运行仍包含JIT时间。现在,后续运行时间为5-10毫秒,比Python版本快25-40倍。请注意,几乎没有分配-固定数量的较小分配仅用于返回值,如果从循环中的其他代码中调用了GC,则不会触发GC。


小智 2

标准性能提示适用:https://docs.julialang.org/en/v1/manual/performance-tips/index.html 特别是,使用点来避免分配和熔断循环。另外,对于这种小数组计算,请考虑使用https://github.com/JuliaArrays/StaticArrays.jl,它更快