Ale*_*xis 1 graph-theory matplotlib networkx python-3.x
我正在研究图形,所以我尝试使用 networkx 和 matplotlib 在 Python 中给定字典绘制图形,这是我的代码:
import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
graph = {
"A":["B","C"],
"B":["D","E"],
"C":["E","F"],
"D":["B","G"],
"E":["B","C"],
"F":["C","G"],
"G":["D","F"]
}
x=10
for vertex, edges in graph.items():
G.add_node("%s" % vertex)
x+=2
for edge in edges:
G.add_node("%s" % edge)
G.add_edge("%s" % vertex, "%s" % edge, weight = x)
print("'%s' it connects with '%s'" % (vertex,edge))
nx.draw(G,with_labels=True)
plt.show()
Run Code Online (Sandbox Code Playgroud)
我已经尝试了函数draw_networkx_edge_labels但似乎我需要一个位置,因为我动态添加了节点,所以我需要一种方法来绘制适合我当前实现的边缘标签。
在添加所有节点后绘制图形,以便您可以计算位置并nx.draw_networkx_edge_labels(...)根据它们使用:
import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
graph = {
"A":["B","C"],
"B":["D","E"],
"C":["E","F"],
"D":["B","G"],
"E":["B","C"],
"F":["C","G"],
"G":["D","F"]
}
x=10
for vertex, edges in graph.items():
G.add_node("%s" % vertex)
x+=2
for edge in edges:
G.add_node("%s" % edge)
G.add_edge("%s" % vertex, "%s" % edge, weight = x)
print("'%s' it connects with '%s'" % (vertex,edge))
# ---- END OF UNCHANGED CODE ----
# Create positions of all nodes and save them
pos = nx.spring_layout(G)
# Draw the graph according to node positions
nx.draw(G, pos, with_labels=True)
# Create edge labels
labels = {e: str(e) for e in G.edges}
# Draw edge labels according to node positions
nx.draw_networkx_edge_labels(G, pos, edge_labels=labels)
plt.show()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2932 次 |
| 最近记录: |