mas*_*ilo 0 javascript svg dom typescript
如何使用 typescript 解析 svg 元素的转换属性?
也就是说,如何解析 svg.g.transform 中字符串中的所有数字和操作,如下所示:
<svg viewBox="-40 0 150 100" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g fill="grey"
transform="rotate(-10 50 100)
translate(-36 45.5)
skewX(40)
scale(1 0.5)">
<path id="heart" d="M 10,30 A 20,20 0,0,1 50,30 A 20,20 0,0,1 90,30 Q 90,60 50,90 Q 10,60 10,30 z" />
</g>
<use xlink:href="#heart" fill="none" stroke="red"/>
</svg>
Run Code Online (Sandbox Code Playgroud)
使用https://developer.mozilla.org/en-US/docs/Web/API/SVGGraphicsElement又名。SVGLocatable
以及SVGTransformable
由本机 DOM 元素实现的接口/API。
这些元素具有.transform
与变换属性相对应的属性。该属性的类型为https://developer.mozilla.org/en-US/docs/Web/API/SVGAnimatedTransformList,并且您想要查看静态定义的baseVal。
变换列表有一个属性numberOfItems
和一个getItem
方法。它可能有一个.length
属性和[]
数组访问器,并且它可能在您的浏览器中是可迭代的,但不要指望这一点。
每个项目的类型为https://developer.mozilla.org/en-US/docs/Web/API/SVGTransform
\n\n该.type
属性会告诉您使用了哪条指令。
因此,您可以通过以下方式解析然后再次手动合成转换属性:
\n\n// javascript js equivalent declaration:\n// function getAttributeTransform_js(nativeSVGElement) {\n// typescript ts declaration\nfunction getAttributeTransform_ts(nativeSVGElement: SVGGraphicsElement) {\n // this definition works in ts and js\n const tl = nativeSVGElement.transform.baseVal;\n const st = [];\n for (let i = 0; i < tl.numberOfItems; i++) {\n const t/*: SVGTransform*/ = tl.getItem(i);\n switch (t.type) {\n case SVGTransform.SVG_TRANSFORM_UNKNOWN: break;\n case SVGTransform.SVG_TRANSFORM_MATRIX: {\n // A matrix(\xe2\x80\xa6) transformation\n // Note: this is the most general transformation, capable of representing more transformations than the other combined.\n // For SVG_TRANSFORM_MATRIX, the matrix contains the a, b, c, d, e, f values supplied by the user.\n //\n // Note: instead of comma (,), whitespace separation would also be allowed\n st.push(`matrix(${t.matrix.a}, ${t.matrix.b}, ${t.matrix.c}, ${t.matrix.d}, ${t.matrix.e}, ${t.matrix.f})`);\n break;\n }\n case SVGTransform.SVG_TRANSFORM_TRANSLATE: {\n // A translate(\xe2\x80\xa6) transformation\n // For SVG_TRANSFORM_TRANSLATE, e and f represent the translation amounts (a=1, b=0, c=0 and d=1).\n st.push(`translate(${t.matrix.e}, ${t.matrix.f})`);\n break;\n }\n case SVGTransform.SVG_TRANSFORM_SCALE: {\n // A scale(\xe2\x80\xa6) transformation\n // For SVG_TRANSFORM_SCALE, a and d represent the scale amounts (b=0, c=0, e=0 and f=0).\n st.push(`scale(${t.matrix.a}, ${t.matrix.d})`);\n break;\n }\n case SVGTransform.SVG_TRANSFORM_ROTATE: {\n // A rotate(\xe2\x80\xa6) transformation\n // For SVG_TRANSFORM_ROTATE, a, b, c, d, e and f together represent the matrix which will result in the given rotation.\n // When the rotation is around the center point (0, 0), e and f will be zero.\n /*\n angle float A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY. It holds the angle that was specified.\n\n For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and SVG_TRANSFORM_SCALE, angle will be zero.\n */\n /*\n This is the hardest case since the origin information is lost!\n We need to recompute it from the matrix.\n from https://math.stackexchange.com/questions/2093314/rotation-matrix-of-rotation-around-a-point-other-than-the-origin\n\n matrix.a = cos_angle = c;\n matrix.b = sin_angle = s;\n Note that by the laws of geometry: c^2+s^2 = 1 (c and s are coordinates on the unit circle)\n matrix.e = -x*c + y*s + x;\n matrix.f = -x*s - y*c + y;\n\n Using Mathematica/Wolfram Language:\n "Assuming[c^2+s^2==1,Solve[e == -x*c + y*s + x&& f == -x*s - y*c + y,{x,y},Reals]//Simplify]//InputForm"\n (you can use WL for free here: https://develop.wolframcloud.com/objects/c26e16f7-44e7-4bb6-81b3-bc07782f9cc5)\n {{x -> (e + (f*s)/(-1 + c))/2, y -> (f - c*f + e*s)/(2 - 2*c)}}\n */\n const e = t.matrix.e, f = t.matrix.f, c = t.matrix.a, s = t.matrix.b;\n const originx = (e + (f*s)/(-1 + c))/2;\n const originy = (f - c*f + e*s)/(2 - 2*c);\n st.push(`rotate(${t.angle}, ${originx}, ${originy})`);\n break;\n }\n case SVGTransform.SVG_TRANSFORM_SKEWX: {\n // A skewx(\xe2\x80\xa6) transformation\n // For SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY, a, b, c and d represent the matrix which will result in the given skew (e=0 and f=0).\n /*\n angle float A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY. It holds the angle that was specified.\n\n For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and SVG_TRANSFORM_SCALE, angle will be zero.\n */\n st.push(`skewx(${t.angle})`);\n break;\n }\n case SVGTransform.SVG_TRANSFORM_SKEWY: {\n // A skewy(\xe2\x80\xa6) transformation\n // For SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY, a, b, c and d represent the matrix which will result in the given skew (e=0 and f=0).\n /*\n angle float A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY. It holds the angle that was specified.\n\n For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and SVG_TRANSFORM_SCALE, angle will be zero.\n */\n st.push(`skewy(${t.angle})`);\n break;\n }\n }\n }\n return st.join(\',\'); // instead of comma (,), whitespace separation is also allowed\n}\n
Run Code Online (Sandbox Code Playgroud)\n\n// example\nconst r = <SVGRectElement>document.createElementNS("http://www.w3.org/2000/svg", "rect");\n\n// the parseable syntax for the transform attribute is pretty relaxed\nr.setAttribute("transform", "translate(1, 0),rotate(0.5), scale(1 2)");\n\n// note that the browser may canonicalize your syntax\n// EDGE canonicalizes the transform to read:\n// \'translate(1) rotate(0.5) scale(1, 2)\'\nconsole.log(r.getAttribute("transform"));\n\n// basically equivalent:\nconsole.log(getAttributeTransform_ts(r));\n
Run Code Online (Sandbox Code Playgroud)\n\n你的例子:
\n\nfunction createElementFromHTML(htmlString) {\n var div = document.createElement(\'div\');\n div.innerHTML = htmlString.trim();\n\n // Change this to div.childNodes to support multiple top-level nodes\n return div.firstChild; \n}\n\ngetAttributeTransform_ts(createElementFromHTML(`\n<g fill="grey"\n transform="rotate(-10 50 100)\n translate(-36 45.5)\n skewX(40)\n scale(1 0.5)">\n <path id="heart" d="M 10,30 A 20,20 0,0,1 50,30 A 20,20 0,0,1 90,30 Q 90,60 50,90 Q 10,60 10,30 z" />\n </g>\n`))\n\n// gives\n// \'rotate(-10, 49.99999999999982, 99.99999999999972),translate(-36, 45.5),skewx(40),scale(1, 0.5)\'\n
Run Code Online (Sandbox Code Playgroud)\n\n请注意,您应该使用.getAttribute("transform")
让浏览器为您合成 SVGTransformList 的字符串形式,而不是使用我上面的脚本!
请注意,我们无法完美检索“rotate”的原始参数,因为没有针对它的 API。它必须根据二维齐次(旋转)矩阵计算。
\n\n灵感来自:
\n\n\n\n也可以看看:
\n\n\n 归档时间: |
|
查看次数: |
1847 次 |
最近记录: |