UnboundLocalError:赋值前引用了局部变量“batch_index”

Mar*_*zov 6 python machine-learning keras tensorflow

这不是我的代码,这里是一行,它显示了一个问题:

model.fit(trainX, trainY, batch_size=2, epochs=200, verbose=2)
Run Code Online (Sandbox Code Playgroud)

(正如我现在所想的,这段代码很可能使用了旧版本的 TF,因为 'epochs' 被写为 'nb_epoch')。

代码的最后更新来自:2017年1月11日!

我已经尝试了互联网上的所有内容(不是那么多),包括查看 tensorflow/keras 的源代码以获取一些提示。只是为了说明我在代码中没有名为“batch_index”的变量。

到目前为止,我已经查看了 TF 的不同版本(tensorflow/tensorflow/python/keras/engine/training_arrays.py)。似乎都是 2018 年的版权,但有些以函数 fit_loop 开头,有些以 model_iteration 开头(可能是 fit_loop 的更新)。

所以,这个“batch_index”变量只能在第一个函数中看到。

我想知道我是否朝着正确的方向前进??!

显示代码没有意义,因为正如我所解释的,代码中首先没有这样的变量。

但是,这是函数“stock_prediction”的一些代码,它给出了错误:

model.fit(trainX, trainY, batch_size=2, epochs=200, verbose=2)
Run Code Online (Sandbox Code Playgroud)

def stock_prediction():

    # Collect data points from csv
    dataset = []

    with open(FILE_NAME) as f:
        for n, line in enumerate(f):
            if n != 0:
                dataset.append(float(line.split(',')[1]))

    dataset = np.array(dataset)

    # Create dataset matrix (X=t and Y=t+1)
    def create_dataset(dataset):
        dataX = [dataset[n+1] for n in range(len(dataset)-2)]
        return np.array(dataX), dataset[2:]
        
    trainX, trainY = create_dataset(dataset)

    # Create and fit Multilinear Perceptron model
    model = Sequential()
    model.add(Dense(8, input_dim=1, activation='relu'))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='adam')
    model.fit(trainX, trainY, nb_epoch=200, batch_size=2, verbose=2)

    # Our prediction for tomorrow
    prediction = model.predict(np.array([dataset[0]]))
    result = 'The price will move from %s to %s' % (dataset[0], prediction[0][0])

    return result

Run Code Online (Sandbox Code Playgroud)

一点澄清:

我试图查看我的 tf/keras 版本,这是它:


---------------------------------------------------------------------------
UnboundLocalError                         Traceback (most recent call last)
<ipython-input-19-3dde95909d6e> in <module>
     14 
     15 # We have our file so we create the neural net and get the prediction
---> 16 print(stock_prediction())
     17 
     18 # We are done so we delete the csv file

<ipython-input-18-8bbf4f61c738> in stock_prediction()
     23     model.add(Dense(1))
     24     model.compile(loss='mean_squared_error', optimizer='adam')
---> 25     model.fit(trainX, trainY, batch_size=1, epochs=200, verbose=2)
     26 
     27     # Our prediction for tomorrow

~\Anaconda3\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
   1176                                         steps_per_epoch=steps_per_epoch,
   1177                                         validation_steps=validation_steps,
-> 1178                                         validation_freq=validation_freq)
   1179 
   1180     def evaluate(self,

~\Anaconda3\lib\site-packages\keras\engine\training_arrays.py in fit_loop(model, fit_function, fit_inputs, out_labels, batch_size, epochs, verbose, callbacks, val_function, val_inputs, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps, validation_freq)
    211                     break
    212 
--> 213             if batch_index == len(batches) - 1:  # Last batch.
    214                 if do_validation and should_run_validation(validation_freq, epoch):
    215                     val_outs = test_loop(model, val_function, val_inputs,

UnboundLocalError: local variable 'batch_index' referenced before assignment
Run Code Online (Sandbox Code Playgroud)

2.2.4-tf

2.2.5

1.14.0

为什么keras显示不同的版本??

Nik*_*ido 7

我检查了training_arrays.py此处)出现错误的函数,正如我所见,我认为问题可能出在这些语句中(第 177 - 205 行):

batches = make_batches(num_train_samples, batch_size)
for batch_index, (batch_start, batch_end) in enumerate(batches): # the problem is here
    # do stuff
    ...
if batch_index == len(batches) - 1:
    # do stuff
    ...
Run Code Online (Sandbox Code Playgroud)

如果batches 是一个空列表,您可能会收到此错误。可能是你的训练集有问题?


小智 5

UnboundLocalError: local variable 'batch_index' referenced before assignment
Run Code Online (Sandbox Code Playgroud)

问题的原因是批次列表为空! batches ==[]

之所以为空,是因为训练数据的样本数量太小,无法除以batch_size

您应该检查您的数据、样本数量或者您应该将 batch_size 减小到允许您将样本数量除以实际结果的批次大小的点。