我正在尝试仅使用 PyTorch Mnist 数据集中的特定数字创建数据加载器
我已经尝试创建自己的采样器,但它不起作用,而且我不确定我是否正确使用了蒙版。
class YourSampler(torch.utils.data.sampler.Sampler):
def __init__(self, mask):
self.mask = mask
def __iter__(self):
return (self.indices[i] for i in torch.nonzero(self.mask))
def __len__(self):
return len(self.mask)
mnist = datasets.MNIST(root=dataroot, train=True, download=True, transform = transform)
mask = [True if mnist[i][1] == 5 else False for i in range(len(mnist))]
mask = torch.tensor(mask)
sampler = YourSampler(mask)
trainloader = torch.utils.data.DataLoader(mnist, batch_size=4, sampler = sampler, shuffle=False, num_workers=2)
Run Code Online (Sandbox Code Playgroud)
到目前为止,我遇到了许多不同类型的错误。对于此实现,它是“停止迭代”。我觉得这很简单/愚蠢,但我找不到一个简单的方法来做到这一点。感谢您的帮助!
Gep*_*o97 10
我能想到的最简单的选择是就地减少数据集:
indices = dataset.targets == 5 # if you want to keep images with the label 5
dataset.data, dataset.targets = dataset.data[indices], dataset.targets[indices]
Run Code Online (Sandbox Code Playgroud)
感谢您的帮助。一段时间后,我找到了一个解决方案(但可能根本不是最好的):
class YourSampler(torch.utils.data.sampler.Sampler):
def __init__(self, mask, data_source):
self.mask = mask
self.data_source = data_source
def __iter__(self):
return iter([i.item() for i in torch.nonzero(mask)])
def __len__(self):
return len(self.data_source)
mnist = datasets.MNIST(root=dataroot, train=True, download=True, transform = transform)
mask = [1 if mnist[i][1] == 5 else 0 for i in range(len(mnist))]
mask = torch.tensor(mask)
sampler = YourSampler(mask, mnist)
trainloader = torch.utils.data.DataLoader(mnist, batch_size=batch_size,sampler = sampler, shuffle=False, num_workers=workers)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
7904 次 |
最近记录: |