Jos*_*ona 2 python neural-network keras tensorflow
我想从另一个 CNN 构建一个 CNN 来提取图像的特征向量。这个想法只是取第一个 CNN 的前 13 层,并用这些层构建第二层。
我正在使用带有 GPU 的 Google Colab Notebook
from keras.models import Model
layer_input_f_nmist = model_f_mnist.input
layer_outputs = [layer.output for layer in model_f_mnist.layers[:13]]
model_mnist_featured = Model(inputs = layer_input_f_nmist, outputs = layer_outputs)
featured_f_mnist_train = model_mnist_featured.predict(X_f_mnist_train)
Run Code Online (Sandbox Code Playgroud)
TypeError Traceback (most recent call last)
<ipython-input-74-ceb627fe9c83> in <module>()
4 layer_outputs = [layer.output for layer in model_f_mnist.layers[:13]]
5
----> 6 model_mnist_featured = Model(inputs = layer_input_f_nmist, outputs = layer_outputs)
7
8 featured_f_mnist_train = model_mnist_featured.predict(X_f_mnist_train)
4 frames
/usr/local/lib/python3.6/dist-packages/keras/engine/network.py in build_map(tensor, finished_nodes, nodes_in_progress, layer, node_index, tensor_index)
1400
1401 # Propagate to all previous tensors connected to this node.
-> 1402 for i in range(len(node.inbound_layers)):
1403 x = node.input_tensors[i]
1404 layer = node.inbound_layers[i]
TypeError: object of type 'InputLayer' has no len()
Run Code Online (Sandbox Code Playgroud)
小智 7
我曾经也有过一样的问题。我曾经tf.keras.layers
在 google colab 中实现模型。keras.layers 的输出和输入与 的输出和输入不匹配tf.keras.layers
。我没有看模特的背景。当我使用tf.keras.models.Model
( inputs = classifier.input
, outputs = layer_outputs
) 而不是 Model( inputs = classifier.input
, outputs = layer_outputs
)时,问题就解决了。我建议在使用google colab 时使用tf.keras.*
属性而不是keras.*
。
归档时间: |
|
查看次数: |
1929 次 |
最近记录: |