Is O(n^(1/logn)) actually constant?

Nir*_*yer 7 algorithm math big-o time-complexity

I came across this time complexity function and according to me, it is actually constant. Please correct me if I am wrong.

n^(1/logn) => (2^m)^(1/log(2^m)) => (2^m)^(1/m) => 2 
Run Code Online (Sandbox Code Playgroud)

因为任何n都可以写为2的幂,所以我可以做上述简化并证明它是常数,对吗?

Joh*_*lla 10

假设log是自然对数,则它等效于e,而不是2,但是无论哪种方式它都是常量。

首先,让:

k = n^(1 / log n)
Run Code Online (Sandbox Code Playgroud)

然后取双方的日志:

log k = (1 / log n) * log n
Run Code Online (Sandbox Code Playgroud)

所以:

log k = 1
Run Code Online (Sandbox Code Playgroud)

因此

k = e.
Run Code Online (Sandbox Code Playgroud)