Joh*_*ohn 6 python opencv image image-processing computer-vision
我想裁剪出图像中充满小曲线的区域。
我尝试使用膨胀将这些像素连接到所需区域,但结果并不令人满意。
opencv中是否有任何功能可以找到该区域?
你走在正确的轨道上,这是一种使用形态变换的方法
这个想法是将所需区域连接到单个轮廓中,然后使用最大面积进行过滤。这样,我们可以将区域作为一个整体来抓取。这是检测到的区域

之后,我们可以使用 Numpy 切片提取区域

import cv2
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9,9), 0)
thresh = cv2.threshold(gray,0,255,cv2.THRESH_OTSU + cv2.THRESH_BINARY)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,9))
dilate = cv2.dilate(opening, dilate_kernel, iterations=5)
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
ROI = original[y:y+h, x:x+w]
break
cv2.imshow('thresh', thresh)
cv2.imshow('opening', opening)
cv2.imshow('dilate', dilate)
cv2.imshow('image', image)
cv2.imshow('ROI', ROI)
cv2.waitKey(0)
Run Code Online (Sandbox Code Playgroud)