Stu*_*mer 6 johnsnowlabs-spark-nlp
我有一个要求,我必须在词形还原步骤中添加一个字典。在尝试在管道中使用它并执行 pipeline.fit() 时,我收到一个 arrayIndexOutOfBounds 异常。实现这一点的正确方法是什么?有什么例子吗?
我将 token 作为词形还原的 inputcol 和 lemma 作为 outputcol 传递。以下是我的代码:
// DocumentAssembler annotator
val document = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
// SentenceDetector annotator
val sentenceDetector = new SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
// tokenizer annotaor
val token = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
import com.johnsnowlabs.nlp.util.io.ExternalResource
// lemmatizer annotator
val lemmatizer = new Lemmatizer()
.setInputCols(Array("token"))
.setOutputCol("lemma")
.setDictionary(ExternalResource("C:/data/notebook/lemmas001.txt","LINE_BY_LINE",Map("keyDelimiter"->",","valueDelimiter"->"|")))
val pipeline = new Pipeline().setStages(Array(document,sentenceDetector,token,lemmatizer))
val result= pipeline.fit(df).transform(df)
Run Code Online (Sandbox Code Playgroud)
错误信息是:
Name: java.lang.ArrayIndexOutOfBoundsException
Message: 1
StackTrace: at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1$$anonfun$apply$14.apply(ResourceHelper.scala:315)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1$$anonfun$apply$14.apply(ResourceHelper.scala:312)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1.apply(ResourceHelper.scala:312)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1.apply(ResourceHelper.scala:312)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$.flattenRevertValuesAsKeys(ResourceHelper.scala:312)
at com.johnsnowlabs.nlp.annotators.Lemmatizer.train(Lemmatizer.scala:52)
at com.johnsnowlabs.nlp.annotators.Lemmatizer.train(Lemmatizer.scala:19)
at com.johnsnowlabs.nlp.AnnotatorApproach.fit(AnnotatorApproach.scala:45)
at org.apache.spark.ml.Pipeline$$anonfun$fit$2.apply(Pipeline.scala:153)
at org.apache.spark.ml.Pipeline$$anonfun$fit$2.apply(Pipeline.scala:149)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
at scala.collection.IterableViewLike$Transformed$class.foreach(IterableViewLike.scala:44)
at scala.collection.SeqViewLike$AbstractTransformed.foreach(SeqViewLike.scala:37)
at org.apache.spark.ml.Pipeline.fit(Pipeline.scala:149)
Run Code Online (Sandbox Code Playgroud)
你的管道对我来说看起来不错,所以一切都取决于里面的内容lemmas001.txt
以及你是否能够在 Windows 上访问它。
注意:我见过 Windows 上的用户在 Apache Spark 中使用此功能:
"C:\\Users\\something\\Desktop\\someDirectory\\somefile.txt"
Run Code Online (Sandbox Code Playgroud)
如何Lemmatizer
在 Spark NLP 中训练很简单:
"C:\\Users\\something\\Desktop\\someDirectory\\somefile.txt"
Run Code Online (Sandbox Code Playgroud)
该文件必须具有以下格式,其中是,keyDelimiter
本例中->
是:valueDelimiter
\t
val lemmatizer = new Lemmatizer()
.setInputCols(Array("token"))
.setOutputCol("lemma")
.setDictionary("AntBNC_lemmas_ver_001.txt", "->", "\t")
Run Code Online (Sandbox Code Playgroud)
另外,如果您不想训练自己的 Lemmatizer,您可以使用预先训练的模型,如下所示:
英语
abnormal -> abnormal abnormals
abode -> abode abodes
abolish -> abolishing abolished abolish abolishes
abolitionist -> abolitionist abolitionists
abominate -> abominate abominated abominates
abomination -> abomination abominations
aboriginal -> aboriginal aboriginals
aborigine -> aborigines aborigine
abort -> aborted abort aborts aborting
abortifacient -> abortifacients abortifacient
abortionist -> abortionist abortionists
abortion -> abortion abortions
abo -> abo abos
abotrite -> abotrites abotrite
abound -> abound abounds abounding abounded
Run Code Online (Sandbox Code Playgroud)
法语
val lemmatizer = new LemmatizerModel.pretrained(name="lemma_antbnc", lang="en")
.setInputCols(Array("token"))
.setOutputCol("lemma")
Run Code Online (Sandbox Code Playgroud)
意大利语
val lemmatizer = new LemmatizerModel.pretrained(name="lemma", lang="fr")
.setInputCols(Array("token"))
.setOutputCol("lemma")
Run Code Online (Sandbox Code Playgroud)
德语
val lemmatizer = new LemmatizerModel.pretrained(name="lemma", lang="it")
.setInputCols(Array("token"))
.setOutputCol("lemma")
Run Code Online (Sandbox Code Playgroud)
所有预训练模型的列表位于: https: //nlp.johnsnowlabs.com/docs/en/models
所有预训练管道的列表位于: https ://nlp.johnsnowlabs.com/docs/en/pipelines
如果您有更多问题,请在评论中告诉我。
全面披露:我是 Spark NLP 库的贡献者之一。
更新:如果您感兴趣,我在Databricks 上的 Scala中为您找到了这个示例(这实际上是他们训练意大利 Lemmatizer 模型的方式)
归档时间: |
|
查看次数: |
1103 次 |
最近记录: |