jco*_*ctx 8 python geometry python-imaging-library
我正在编写一个Python程序来生成着名的Heinlein小说"月亮是一个苛刻的女主人 "作为个人项目的Luna Free State旗帜.我一直在抨击纹章规则并在网上匹配数学公式,但在我的bendsinister例程中显然有些错误,因为断言在取消注释时失败了.弯曲阴险区域应该是旗帜总面积的1/3,而不是.我做过的唯一真正狡猾的事情是猜测梯形高度的公式,但我猜错误可能在任何地方.我已经删除了大部分代码,只留下了显示问题的必要条件.希望没有数学挑战的人可以发现错误!
#!/usr/bin/python
'generate bend sinister according to rules of heraldry'
import sys, os, random, math, Image, ImageDraw
FLAG = Image.new('RGB', (900, 600), 'black')
CANVAS = ImageDraw.Draw(FLAG)
DEBUGGING = True
def bendsinister(image = FLAG, draw = CANVAS):
'''a bend sinister covers 1/3 of the field, sinister chief to dexter base
(some sources on the web say 1/5 of the field, but we'll use 1/3)
the "field" in this case being the area of the flag, so we need to
find a trapezoid which is 1/6 the total area (width * height).
we need to return only the width of the diagonal, which is double
the height of the calculated trapezoid
'''
x, y = image.size
b = math.sqrt((x ** 2) + (y ** 2))
A = float(x * y)
debug('%d * %d = %d' % (x, y, A))
H = triangle_height(A / 2, b) # height of triangular half of flag
width = trapezoid_height(b, H, A / 6) * 2
if command == 'bendsinister':
show_bendsinister(x, y, width, image, draw)
return width
def show_bendsinister(x, y, width, image = FLAG, draw = CANVAS):
'for debugging formula'
dexter_base, sinister_chief = (0, y), (x, 0)
draw.line((dexter_base, sinister_chief), 'blue', int(width))
image.show()
debug(image.getcolors(2)) # should be twice as many black pixels as blue
def triangle_height(a, b):
'a=bh/2'
h = float(a) / (float(b) / 2)
debug('triangle height: %.2f' % h)
return h
def trapezoid_height(b, H, a):
'''calculate trapezoid height (h) given the area (a) of the trapezoid and
base b, the longer base, when it is known that the trapezoid is a section
of a triangle of height H, such that the top, t, equals b when h=0 and
t=0 when h=H. h is therefore inversely proportional to t with the formula
t=(1-(h/H))*b, found simply by looking for what fit the two extremes.
the area of a trapezoid is simply the height times the average length of
the two bases, b and t, i.e.: a=h*((b+t)/2). the formula reduces
then to (2*a)/b=(2*h)+(h**2)/H, which is the quadratic equation
(1/H)*(h**2)+(2*h)-((2*a)/b)=0; solve for h using the quadratic formula
'''
try:
h = (-2 + math.sqrt(4 - 4 * (1.0 / H) * -((2 * a) / b))) / (2 * (1.0 / H))
debug('trapezoid height with plus: %.2f' % h)
except: # must be imaginary, so try minus instead
h = (-2 - math.sqrt(4 - 4 * (1.0 / H) * -((2 * a) / b))) / (2 * (1.0 / H))
debug('trapezoid height with minus: %.2f' % h)
t = (1 - (float(h) / H)) * b
debug('t=%d, a=%d, check=%d' % (t, round(a), round(h * ((b + t) / 2))))
#assert round(a) == round(h * ((b + t) / 2))
return h
def debug(message):
if DEBUGGING:
print >>sys.stderr, message
if __name__ == '__main__':
command = os.path.splitext(os.path.basename(sys.argv[0]))[0]
print eval(command)(*sys.argv[1:]) or ''
Run Code Online (Sandbox Code Playgroud)
这是调试输出,显示我远离1/3区域:
jcomeau@intrepid:~/rentacoder/jcomeau/tanstaafl$ ./bendsinister.py 900 * 600 = 540000 triangle height: 499.23 trapezoid height with plus: 77.23 t=914, a=90000, check=77077 [(154427, (0, 0, 255)), (385573, (0, 0, 0))] 154.462354191
这是输出的图像,添加了一些行:
红线划分两个三角形,或者可以用于计算梯形.我正在使用从左上角开始的那个.绿线是该三角形的高度,即程序中的变量H.
将矩形分成两个三角形.它们是完全相同的.
黑色三角形+蓝色梯形是三角形A.黑色三角形本身就是三角形B.
三角形A和三角形B是相似的三角形,因此它们的面积与相关它们的比例因子的平方相关.
我们希望Blue Trapezoid是Triangle A区域的三分之一.(这样弯曲将占整个矩形的三分之一).这意味着三角形B必须是三角形A的2/3区域.因此,比例因子必须是sqrt(2/3).
然后,您应该能够将其转换为非常容易地为您提供弯曲几何的坐标.
| 归档时间: |
|
| 查看次数: |
694 次 |
| 最近记录: |