3ve*_*z0n 4 image-processing dataset pytorch dataloader
我正在使用线圈 100 数据集,其中包含 100 个对象的图像,每个对象通过将每个图像旋转 5 度,从固定相机拍摄的每个对象有 72 个图像。以下是我正在使用的文件夹结构:
数据/火车/obj1/obj01_0.png, obj01_5.png ... obj01_355.png
。
.
数据/火车/obj85/obj85_0.png, obj85_5.png ... obj85_355.png
。
.
数据/测试/obj86/obj86_0.ong, obj86_5.png ... obj86_355.png
。
.
数据/测试/obj100/obj100_0.ong, obj100_5.png ... obj100_355.png
我使用了 imageloader 和 dataloader 类。训练和测试数据集正确加载,我可以打印类名。
train_path = 'data/train/'
test_path = 'data/test/'
data_transforms = {
transforms.Compose([
transforms.Resize(224, 224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
}
train_data = torchvision.datasets.ImageFolder(
root=train_path,
transform= data_transforms
)
test_data = torchvision.datasets.ImageFolder(
root = test_path,
transform = data_transforms
)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=None,
num_workers=1,
shuffle=False
)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=None,
num_workers=1,
shuffle=False
)
print(len(train_data))
print(len(test_data))
classes = train_data.class_to_idx
print("detected classes: ", classes)
Run Code Online (Sandbox Code Playgroud)
In my model I wish to pass every image through pretrained resnet and make a dataset from the output of resnet to feed into a biderectional LSTM.
For which I need to access the images by classname and index.
for ex. pre_resnet_train_data['obj01'][0] should be obj01_0.png and post_resnet_train_data['obj01'][0] should be the resnet output of obj01_0.png and so on.
I'm a beginner in Pytorch and for the past 2 days, I have read many tutorials and stackoverflow questions about creating a custom dataset class but couldn't figure out how to achieve what I want.
please help!
假设您只计划在图像上运行一次重新发送并保存输出以备后用,我建议您编写自己的数据集,从ImageFolder.
将每个 resnet 输出保存在与带有.pth扩展名的图像文件相同的位置。
class MyDataset(torchvision.datasets.ImageFolder):
def __init__(self, root, transform):
super(MyDataset, self).__init__(root, transform)
def __getitem__(self, index):
# override ImageFolder's method
"""
Args:
index (int): Index
Returns:
tuple: (sample, resnet, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
# this is where you load your resnet data
resnet_path = os.path.join(os.path.splitext(path)[0], '.pth') # replace image extension with .pth
resnet = torch.load(resnet_path) # load the stored features
return sample, resnet, target
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3314 次 |
| 最近记录: |