Gab*_*mel 5 python opencv numpy image-processing sudoku
我正在使用opencv
python 进行个人项目。要检测一个数独网格。
原始图像是:
到目前为止,我已经创建了这个:
然后尝试选择一个大斑点。结果可能与此类似:
结果是黑色图像:
代码是:
import cv2
import numpy as np
def find_biggest_blob(outerBox):
max = -1
maxPt = (0, 0)
h, w = outerBox.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
for y in range(0, h):
for x in range(0, w):
if outerBox[y, x] >= 128:
area = cv2.floodFill(outerBox, mask, (x, y), (0, 0, 64))
#cv2.floodFill(outerBox, mask, maxPt, (255, 255, 255))
image_path = 'Images/Results/sudoku-find-biggest-blob.jpg'
cv2.imwrite(image_path, outerBox)
cv2.imshow(image_path, outerBox)
def main():
image = cv2.imread('Images/Test/sudoku-grid-detection.jpg', 0)
find_biggest_blob(image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
Run Code Online (Sandbox Code Playgroud)
repl中的代码是:https : //repl.it/@gmunumel/SudokuSolver
任何的想法?
这是一种方法:
转换为灰度和中值模糊后,我们自适应阈值以获得二值图像
接下来我们找到轮廓并使用轮廓区域进行过滤。这是检测到的板
现在为了获得图像的自顶向下视图,我们执行透视变换。这是结果
import cv2
import numpy as np
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 3)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,11,3)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
transformed = perspective_transform(original, approx)
break
cv2.imshow('transformed', transformed)
cv2.imwrite('board.png', transformed)
cv2.waitKey()
Run Code Online (Sandbox Code Playgroud)