Rya*_*an 5 deep-learning pytorch
尝试为多标签分类编写焦点损失
class FocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=0.25):
self._gamma = gamma
self._alpha = alpha
def forward(self, y_true, y_pred):
cross_entropy_loss = torch.nn.BCELoss(y_true, y_pred)
p_t = ((y_true * y_pred) +
((1 - y_true) * (1 - y_pred)))
modulating_factor = 1.0
if self._gamma:
modulating_factor = torch.pow(1.0 - p_t, self._gamma)
alpha_weight_factor = 1.0
if self._alpha is not None:
alpha_weight_factor = (y_true * self._alpha +
(1 - y_true) * (1 - self._alpha))
focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor *
cross_entropy_loss)
return focal_cross_entropy_loss.mean()
Run Code Online (Sandbox Code Playgroud)
但是当我运行这个时,我得到
File "train.py", line 82, in <module>
loss = loss_fn(output, target)
File "/home/bubbles/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 538, in __call__
for hook in self._forward_pre_hooks.values():
File "/home/bubbles/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 591, in __getattr__
type(self).__name__, name))
AttributeError: 'FocalLoss' object has no attribute '_forward_pre_hooks'
Run Code Online (Sandbox Code Playgroud)
任何建议都会非常有帮助,提前致谢。
您不应该继承,torch.nn.Module
因为它是为具有可学习参数的模块(例如神经网络)而设计的。
只需创建正常的函子或函数就可以了。
顺便提一句。如果你继承它,你应该调用super().__init__()
你的__init__()
.
实际上继承nn.Module
可能是一个好主意,它允许您将损失用作神经网络的一部分,并且在 PyTorch 实现/PyTorch Lightning 中很常见。
归档时间: |
|
查看次数: |
1986 次 |
最近记录: |