快速,python式的方式在numpy数组中对1的块进行排名?

Mar*_*ras 8 python arrays numpy list-comprehension

我有一个numpy的阵列,其中包括0的和1的。1数组中每个的序列代表一个事件的发生。我想用特定于事件的ID号(与其余数组元素一起np.nan)标记与事件相对应的元素,我当然可以在一个循环中做到这一点,但是还有更多的“ python-ish”(快速,矢量化)方法它?

我要标记的具有3个事件的numpy数组的示例。

import numpy as np 
arr = np.array([0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,1,1])
some_func(arr)

# Expected output of some_func I search for: 
# [np.nan,np.nan,np.nan,0,0,0,np.nan,np.nan,np.nan,1,1,np.nan,np.nan,np.nan,2,2,2,2]
Run Code Online (Sandbox Code Playgroud)

Div*_*kar 9

您想贴上标签,还好,SciPy有一个,scipy.ndimage.label-

In [43]: from scipy.ndimage import label

In [47]: out = label(arr)[0]

In [48]: np.where(arr==0,np.nan,out-1)
Out[48]: 
array([nan, nan, nan,  0.,  0.,  0., nan, nan, nan,  1.,  1., nan, nan,
       nan,  2.,  2.,  2.,  2.])
Run Code Online (Sandbox Code Playgroud)

还有一些NumPy的工作 -

def rank_chunks(arr):
    m = np.r_[False,arr.astype(bool)]
    idx = np.flatnonzero(m[:-1] < m[1:])
    id_ar = np.zeros(len(arr),dtype=float)
    id_ar[idx[1:]] = 1
    out = id_ar.cumsum()
    out[arr==0] = np.nan
    return out
Run Code Online (Sandbox Code Playgroud)

另一个与masking+ np.repeat-

def rank_chunks_v2(arr):
    m = np.r_[False,arr.astype(bool),False]
    idx = np.flatnonzero(m[:-1] != m[1:])
    l = idx[1::2]-idx[::2]
    out = np.full(len(arr),np.nan,dtype=float)
    out[arr!=0] = np.repeat(np.arange(len(l)),l)
    return out
Run Code Online (Sandbox Code Playgroud)

时间(将给定的输入平铺到1Mx)-

In [153]: arr_big = np.tile(arr,1000000)

In [154]: %timeit np.where(arr_big==0,np.nan,label(arr_big)[0]-1)
     ...: %timeit rank_chunks(arr_big)
     ...: %timeit rank_chunks_v2(arr_big)
1 loop, best of 3: 312 ms per loop
1 loop, best of 3: 263 ms per loop
1 loop, best of 3: 229 ms per loop
Run Code Online (Sandbox Code Playgroud)