HCA*_*CAI 8 r dplyr data.table tidyverse
我有一个随着时间推移接触表面的data.frame。我只想为每个AcvitivityID附加最后一行的副本:
head(movsdf.rbind)
ActivityID CareType HCWType Orientation Surface Date Time Dev.Date.Time SurfaceCategories
1 01 IV RN01 leftFacing AlcOutside 2019-08-03 11:08:01 2019-08-03 11:08:01 HygieneArea
2 01 IV RN01 leftFacing In 2019-08-03 11:08:12 2019-08-03 11:08:12 In
3 01 IV RN01 leftFacing Door 2019-08-03 11:08:12 2019-08-03 11:08:12 FarPatient
4 02 IV RN01 leftFacing Door 2019-08-03 11:08:18 2019-08-03 11:08:18 FarPatient
5 02 IV RN01 leftFacing Other 2019-08-03 11:08:22 2019-08-03 11:08:22 FarPatient
6 03 IV RN01 leftFacing Table 2019-08-03 11:10:26 2019-08-03 11:10:26 NearPatient
Run Code Online (Sandbox Code Playgroud)
示例数据:
movsdf.rbind<-data.frame(ActivityID=rep(1:4, each=10),Surface=rep(c("In","Table","Out"),each=10))
Run Code Online (Sandbox Code Playgroud)
所以我可以从这里开始工作:
repeatss <- aggregate(movsdf.rbind, by=list(movsdf.rbind$ActivityID), FUN = function(x) { last = tail(x,1) })
movsdf.rbind <-rbind(movsdf.rbind, repeatss)
Run Code Online (Sandbox Code Playgroud)
这可以解决问题,但是看起来很笨拙,然后数据不整齐(不是真的很重要,但我觉得dplyr或中可能存在一些更优雅的东西data.table)。有什么想法吗?
另一种使用方法slice:
library(dplyr)
DF %>%
group_by(ActivityID) %>%
slice(c(1:n(),n()))
Run Code Online (Sandbox Code Playgroud)
这使:
Run Code Online (Sandbox Code Playgroud)# A tibble: 9 x 9 # Groups: ActivityID [3] ActivityID CareType HCWType Orientation Surface Date Time Dev.Date.Time SurfaceCategori~ <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 1 1 IV RN01 leftFacing AlcOutside 2019-08-~ 11:08:01 2019-08-03 11:08~ HygieneArea 2 1 IV RN01 leftFacing In 2019-08-~ 11:08:12 2019-08-03 11:08~ In 3 1 IV RN01 leftFacing Door 2019-08-~ 11:08:12 2019-08-03 11:08~ FarPatient 4 1 IV RN01 leftFacing Door 2019-08-~ 11:08:12 2019-08-03 11:08~ FarPatient 5 2 IV RN01 leftFacing Door 2019-08-~ 11:08:18 2019-08-03 11:08~ FarPatient 6 2 IV RN01 leftFacing Other 2019-08-~ 11:08:22 2019-08-03 11:08~ FarPatient 7 2 IV RN01 leftFacing Other 2019-08-~ 11:08:22 2019-08-03 11:08~ FarPatient 8 3 IV RN01 leftFacing Table 2019-08-~ 11:10:26 2019-08-03 11:10~ NearPatient 9 3 IV RN01 leftFacing Table 2019-08-~ 11:10:26 2019-08-03 11:10~ NearPatient
两个基本的R替代方案:
# one
lastrows <- cumsum(aggregate(CareType ~ ActivityID, DF, length)[[2]])
DF[sort(c(seq(nrow(DF)), lastrows)),]
# two
idx <- unlist(tapply(1:nrow(DF), DF$ActivityID, FUN = function(x) c(x, tail(x, 1))))
DF[idx,]
Run Code Online (Sandbox Code Playgroud)
两者都给出相同的结果。
两种data.table替代方案:
library(data.table)
setDT(DF) # convert 'DF' to a data.table
# one
DF[DF[, .I[c(1:.N,.N)], by = ActivityID]$V1]
# two
DF[, .SD[c(1:.N,.N)], by = ActivityID]
Run Code Online (Sandbox Code Playgroud)
使用的数据:
DF <- structure(list(ActivityID = c(1L, 1L, 1L, 2L, 2L, 3L),
CareType = c("IV", "IV", "IV", "IV", "IV", "IV"),
HCWType = c("RN01", "RN01", "RN01", "RN01", "RN01", "RN01"),
Orientation = c("leftFacing", "leftFacing", "leftFacing", "leftFacing", "leftFacing", "leftFacing"),
Surface = c("AlcOutside", "In", "Door", "Door", "Other", "Table"),
Date = c("2019-08-03", "2019-08-03", "2019-08-03", "2019-08-03", "2019-08-03", "2019-08-03"),
Time = c("11:08:01", "11:08:12", "11:08:12", "11:08:18", "11:08:22", "11:10:26"),
Dev.Date.Time = c("2019-08-03 11:08:01", "2019-08-03 11:08:12", "2019-08-03 11:08:12", "2019-08-03 11:08:18", "2019-08-03 11:08:22", "2019-08-03 11:10:26"),
SurfaceCategories = c("HygieneArea", "In", "FarPatient", "FarPatient", "FarPatient", "NearPatient")),
class = "data.frame", row.names = c(NA, -6L))
Run Code Online (Sandbox Code Playgroud)