Jak*_*kas 6 python opencv image-processing line computer-vision
我已尽力找出如何使用OpenCV进行线路检测。但是,我找不到所需的示例。我想用它在简单的二维点云中找到线。作为测试,我想使用以下几点:
import random
import numpy as np
import matplotlib.pyplot as plt
a = np.random.randint(1,101,400) # Random points.
b = np.random.randint(1,101,400) # Random points.
for i in range(0, 90, 2): # A line to detect
a = np.append(a, [i+5])
b = np.append(b, [0.5*i+30])
plt.plot(a, b, '.')
plt.show()
Run Code Online (Sandbox Code Playgroud)
我已经找到了有关霍夫变换如何工作的许多初始示例。但是,当涉及到代码示例时,我只能发现已使用图像。
有没有一种方法可以使用OpenCV Hough变换来检测一组点中的线,或者可以推荐其他方法或库吗?
----编辑----
阅读了一些很好的答案之后,我觉得我应该描述一下我打算使用它的目的。我有高分辨率的2D LiDAR,需要从数据中提取墙。打字扫描如下所示:

在进行了更多研究之后,我怀疑霍夫变换在这种情况下使用效果不佳。关于我应该寻找的任何提示?
(如果有人感兴趣,可以使用LiDAR和墙面提取来生成地图并导航机器人。)
谢谢,雅各布
一种方法是按照这些幻灯片自行实现霍夫变换,跳过边缘检测部分。
或者,您可以从点列表创建图像,例如
#create an image from list of points
x_shape = int(np.max(a) - np.min(a))
y_shape = int(np.max(b) - np.min(b))
im = np.zeros((x_shape+1, y_shape+1))
indices = np.stack([a-1,b-1], axis =1).astype(int)
im[indices[:,0], indices[:,1]] = 1
plt.imshow(im)
#feed to opencv as usual
Run Code Online (Sandbox Code Playgroud)
按照这个问题的答案
编辑:不要输入 OpenCV,而是使用 skimage,如文档中所述:
import numpy as np
from skimage.transform import (hough_line, hough_line_peaks,
probabilistic_hough_line)
from skimage.feature import canny
from skimage import data
import matplotlib.pyplot as plt
from matplotlib import cm
# Constructing test image
#image = np.zeros((100, 100))
#idx = np.arange(25, 75)
#image[idx[::-1], idx] = 255
#image[idx, idx] = 255
image = im
# Classic straight-line Hough transform
h, theta, d = hough_line(image)
# Generating figure 1
fig, axes = plt.subplots(1, 3, figsize=(15, 6))
ax = axes.ravel()
ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[0].set_axis_off()
ax[1].imshow(np.log(1 + h),
extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]],
cmap=cm.gray, aspect=1/1.5)
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
ax[1].axis('image')
ax[2].imshow(image, cmap=cm.gray)
for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
y1 = (dist - image.shape[1] * np.cos(angle)) / np.sin(angle)
ax[2].plot((0, image.shape[1]), (y0, y1), '-r')
ax[2].set_xlim((0, image.shape[1]))
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_axis_off()
ax[2].set_title('Detected lines')
plt.tight_layout()
plt.show()
# Line finding using the Probabilistic Hough Transform
image = data.camera()
edges = canny(image, 2, 1, 25)
lines = probabilistic_hough_line(edges, threshold=10, line_length=5,
line_gap=3)
# Generating figure 2
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True)
ax = axes.ravel()
ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[1].imshow(edges, cmap=cm.gray)
ax[1].set_title('Canny edges')
ax[2].imshow(edges * 0)
for line in lines:
p0, p1 = line
ax[2].plot((p0[0], p1[0]), (p0[1], p1[1]))
ax[2].set_xlim((0, image.shape[1]))
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_title('Probabilistic Hough')
for a in ax:
a.set_axis_off()
plt.tight_layout()
plt.show()
Run Code Online (Sandbox Code Playgroud)