在张量流中,假设我有一个来自生成器的数据集:
dataset = tf.data.Dataset.from_generator(gen...)
Run Code Online (Sandbox Code Playgroud)
这个生成器生成无限的非重复数据(就像无限的非循环小数)。
model.fit(dataset, steps_per_epoch=10000, epochs=5)
Run Code Online (Sandbox Code Playgroud)
现在在这 5 个训练周期内,使用的数据是否相同?即总是来自生成器的前 10000 个项目?而不是 epoch 1 的 0-9999、epoch 2 的 10000-19999 等。
参数呢initial_epoch
?如果我设置为1,模型会从第10000项开始训练吗?
model.fit(dataset, steps_per_epoch=10000, epochs=5, initial_epoch=1)
Run Code Online (Sandbox Code Playgroud)
更新:
这个简单的测试表明每次model.fit()
调用时数据集都会重置
def gen():
i = 1
while True:
yield np.array([[i]]), np.array([[0]])
i += 1
ds = tf.data.Dataset.from_generator(gen, output_types=(tf.int32, tf.int32)).batch(3)
x = Input(shape=(1, 1))
model = Model(inputs=x, outputs=x)
model.compile('adam', loss=lambda true, pred: tf.reduce_mean(pred))
for i in range(10):
model.fit(ds, steps_per_epoch=5, epochs=1)
Run Code Online (Sandbox Code Playgroud)
输出:
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 9ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 2ms/step - loss: 8.0000
Run Code Online (Sandbox Code Playgroud)
1 次调用 5 个 epoch:
model.fit(ds, steps_per_epoch=5, epochs=5)
Run Code Online (Sandbox Code Playgroud)
输出:
Epoch 1/5
1/5 [=====>........................] - ETA: 0s - loss: 2.0000
5/5 [==============================] - 0s 9ms/step - loss: 8.0000
Epoch 2/5
1/5 [=====>........................] - ETA: 0s - loss: 17.0000
5/5 [==============================] - 0s 2ms/step - loss: 23.0000
Epoch 3/5
1/5 [=====>........................] - ETA: 0s - loss: 32.0000
5/5 [==============================] - 0s 2ms/step - loss: 38.0000
Epoch 4/5
1/5 [=====>........................] - ETA: 0s - loss: 47.0000
5/5 [==============================] - 0s 2ms/step - loss: 53.0000
Epoch 5/5
1/5 [=====>........................] - ETA: 0s - loss: 62.0000
5/5 [==============================] - 0s 2ms/step - loss: 68.0000
Run Code Online (Sandbox Code Playgroud)