pac*_*der 5 python algorithm interpolation bspline
维基百科为我们提供了 de Boor 算法的 Python 实现:
def deBoor(k, x, t, c, p):
"""
Evaluates S(x).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
d = [c[j + k - p] for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
alpha = (x - t[j+k-p]) / (t[j+1+k-r] - t[j+k-p])
d[j] = (1.0 - alpha) * d[j-1] + alpha * d[j]
return d[p]
Run Code Online (Sandbox Code Playgroud)
是否有类似的算法计算 B-Spline 插值曲线的导数(甚至 n 阶导数)?
我知道在数学上它被简化为使用低阶样条,但不能将其应用于 de Boor 算法。
我想我找到了重新使用 de Boor 曲线导数算法的正确方法。
\n\n首先,我们考虑 B 样条曲线的定义。它是控制点的线性组合:\n (1)
因此,导数是基函数导数的线性组合
\n\n (2)
基函数的导数定义如下:
\n\n (3)
我们将(3)插入(2),经过一些代数功夫(此处描述)http://public.vrac.iastate.edu/~oliver/courses/me625/week5b.pdf,我们得到:
\n\n (4),\n其中
B 样条曲线的导数只不过是建立在新控制点 Q 之上的 (p-1) 次新 B 样条曲线。\n现在,为了采用 de Boor 算法,我们计算设置新的控制点并将样条曲线度数 p 降低 1:
\n\ndef deBoorDerivative(k, x, t, c, p):\n """\n Evaluates S(x).\n\n Args\n ----\n k: index of knot interval that contains x\n x: position\n t: array of knot positions, needs to be padded as described above\n c: array of control points\n p: degree of B-spline\n """\n q = [p * (c[j+k-p+1] - c[j+k-p]) / (t[j+k+1] - t[j+k-p+1]) for j in range(0, p)]\n\n for r in range(1, p):\n for j in range(p-1, r-1, -1):\n right = j+1+k-r\n left = j+k-(p-1)\n alpha = (x - t[left]) / (t[right] - t[left])\n q[j] = (1.0 - alpha) * q[j-1] + alpha * q[j]\n\n return q[p-1]\nRun Code Online (Sandbox Code Playgroud)\n\n测试:
\n\nimport numpy as np\nimport math as m\n\npoints = np.array([[i, m.sin(i / 3.0), m.cos(i / 2)] for i in range(0, 11)])\nknots = np.array([0, 0, 0, 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.0, 1.0, 1.0])\n\n\ndef finiteDifferenceDerivative(k, x, t, c, p):\n """ Third order finite difference derivative """\n\n f = lambda xx : deBoor(k, xx, t, c, p)\n\n dx = 1e-7\n\n return (- f(x + 2 * dx) \\\n + 8 * f(x + dx) \\\n - 8 * f(x - dx) \\\n + f(x - 2 * dx)) / ( 12 * dx )\n\n\nprint "Derivatives: "\xc2\xb7\nprint "De Boor:\\t", deBoorDerivative(7, 0.44, knots, points, 3)\nprint "Finite Difference:\\t", finiteDifferenceDerivative(7, 0.44, knots, points, 3)\n\nRun Code Online (Sandbox Code Playgroud)\n\n输出:
\n\nDerivatives: \nDe Boor: [10. 0.36134438 2.63969004]\nFinite Difference: [9.99999999 0.36134438 2.63969004]\nRun Code Online (Sandbox Code Playgroud)\n
| 归档时间: |
|
| 查看次数: |
1886 次 |
| 最近记录: |