阶段失败时产生Spark FileAlreadyExistsException

Arg*_*aha 5 python amazon-s3 dataframe apache-spark pyspark

我试图在重新分区后将数据帧写入s3位置。但是,只要写入阶段失败并且Spark重试该阶段,就会抛出FileAlreadyExistsException。

当我重新提交工作时,如果spark一次完成此阶段,则工作正常。

下面是我的代码块

df.repartition(<some-value>).write.format("orc").option("compression", "zlib").mode("Overwrite").save(path)
Run Code Online (Sandbox Code Playgroud)

我相信Spark应该在重试之前从失败的阶段删除文件。我知道,如果我们将重试设置为零,但是火花阶段将失败,这将是一个解决方案,它将解决。

下面是错误:

Job aborted due to stage failure: Task 0 in stage 6.1 failed 4 times, most recent failure: Lost task 0.3 in stage 6.1 (TID 740, ip-address, executor 170): org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<bucket-name>/<path-to-object>/part-00000-c3c40a57-7a50-41da-9ce2-555753cab63a-c000.zlib.orc
    at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
    at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
    at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
    at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
    at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
    at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
    at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:242)
    at org.apache.orc.impl.PhysicalFsWriter.<init>(PhysicalFsWriter.java:95)
    at org.apache.orc.impl.WriterImpl.<init>(WriterImpl.java:170)
    at org.apache.orc.OrcFile.createWriter(OrcFile.java:843)
    at org.apache.orc.mapreduce.OrcOutputFormat.getRecordWriter(OrcOutputFormat.java:50)
    at org.apache.spark.sql.execution.datasources.orc.OrcOutputWriter.<init>(OrcOutputWriter.scala:43)
    at org.apache.spark.sql.execution.datasources.orc.OrcFileFormat$$anon$1.newInstance(OrcFileFormat.scala:121)
    at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
    at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:121)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
Run Code Online (Sandbox Code Playgroud)

我在EMR中使用Spark 2.4,请提出解决方案。

编辑1:请注意,该问题与覆盖模式无关,我已经在使用它。正如问题标题所暗示的那样,问题在于阶段失败时的剩余文件。可能是Spark UI清除了它。 在此处输入图片说明

mor*_*007 5

设置spark.hadoop.orc.overwrite.output.file=true在你的星火配置。

您可以在此处找到有关此配置的更多详细信息 - OrcConf.java

  • 我不久前遇到了类似的问题——[我的答案](/sf/answers/4404835851/)可能有助于提供更通用的解决方案。 (3认同)
  • 感谢您的回答,但问题不在于覆盖,请检查我的相关代码,我已经在使用它了。问题是阶段失败的剩余文件。 (2认同)