Sen*_*mar 2 python deep-learning pytorch batch-normalization
我正在使用 PyTorch 来实现基于骨架的动作识别的分类网络。该模型由三个卷积层和两个全连接层组成。这个基本模型在 NTU-RGB+D 数据集中给了我大约 70% 的准确率。我想了解更多关于批量归一化的知识,所以我为除最后一层之外的所有层添加了批量归一化。令我惊讶的是,评估准确率下降到了 60% 而不是提高,但训练准确率却从 80% 提高到了 90%。谁能说我做错了什么?或者添加批量标准化不需要提高准确性?
批量归一化模型
class BaseModelV0p2(nn.Module):
def __init__(self, num_person, num_joint, num_class, num_coords):
super().__init__()
self.name = 'BaseModelV0p2'
self.num_person = num_person
self.num_joint = num_joint
self.num_class = num_class
self.channels = num_coords
self.out_channel = [32, 64, 128]
self.loss = loss
self.metric = metric
self.bn_momentum = 0.01
self.bn_cv1 = nn.BatchNorm2d(self.out_channel[0], momentum=self.bn_momentum)
self.conv1 = nn.Sequential(nn.Conv2d(in_channels=self.channels, out_channels=self.out_channel[0],
kernel_size=3, stride=1, padding=1),
self.bn_cv1,
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.bn_cv2 = nn.BatchNorm2d(self.out_channel[1], momentum=self.bn_momentum)
self.conv2 = nn.Sequential(nn.Conv2d(in_channels=self.out_channel[0], out_channels=self.out_channel[1],
kernel_size=3, stride=1, padding=1),
self.bn_cv2,
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.bn_cv3 = nn.BatchNorm2d(self.out_channel[2], momentum=self.bn_momentum)
self.conv3 = nn.Sequential(nn.Conv2d(in_channels=self.out_channel[1], out_channels=self.out_channel[2],
kernel_size=3, stride=1, padding=1),
self.bn_cv3,
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.bn_fc1 = nn.BatchNorm1d(256 * 2, momentum=self.bn_momentum)
self.fc1 = nn.Sequential(nn.Linear(self.out_channel[2]*8*3, 256*2),
self.bn_fc1,
nn.ReLU(),
nn.Dropout2d(p=0.5)) # TO check
self.fc2 = nn.Sequential(nn.Linear(256*2, self.num_class))
def forward(self, input):
list_bn_layers = [self.bn_fc1, self.bn_cv3, self.bn_cv2, self.bn_cv1]
# set the momentum of the batch norm layers to given momentum value during trianing and 0 during evaluation
# ref: https://discuss.pytorch.org/t/model-eval-gives-incorrect-loss-for-model-with-batchnorm-layers/7561
# ref: https://github.com/pytorch/pytorch/issues/4741
for bn_layer in list_bn_layers:
if self.training:
bn_layer.momentum = self.bn_momentum
else:
bn_layer.momentum = 0
logits = []
for i in range(self.num_person):
out = self.conv1(input[:, :, :, :, i])
out = self.conv2(out)
out = self.conv3(out)
logits.append(out)
out = torch.max(logits[0], logits[1])
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.fc2(out)
t = out
assert not ((t != t).any()) # find out nan in tensor
assert not (t.abs().sum() == 0) # find out 0 tensor
return out
Run Code Online (Sandbox Code Playgroud)
我对您所观察到的现象的解释是,不是减少协方差偏移,这是批量标准化的目的,而是增加它。换句话说,不是减少训练和测试之间的分布差异,而是增加它,这就是导致训练和测试之间的准确度差异更大的原因。Batch Normalization 并不总是保证更好的性能,但对于某些问题,它不能很好地工作。我有几个可能导致改进的想法:
bn_momentum
稍微减少参数,看看这是否也稳定了 Batch Norm 参数。bn_momentum
在测试时设置为零,我认为您应该model.train()
在想要训练以及model.eval()
想要使用训练有素的模型进行推理时调用。